绘制Pandas OLS线性回归结果
我想知道如何把我用pandas做的线性回归结果画出来。
import pandas as pd
from pandas.stats.api import ols
df = pd.read_csv('Samples.csv', index_col=0)
control = ols(y=df['Control'], x=df['Day'])
one = ols(y=df['Sample1'], x=df['Day'])
two = ols(y=df['Sample2'], x=df['Day'])
我试过用plot()
,但是没成功。我想把这三个样本都画在一个图上,有没有pandas或者matplotlib的代码可以处理这些总结格式的数据呢?
总之,结果看起来是这样的:
对照组
------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 7
Number of Degrees of Freedom: 2
R-squared: 0.5642
Adj R-squared: 0.4770
Rmse: 4.6893
F-stat (1, 5): 6.4719, p-value: 0.0516
Degrees of Freedom: model 1, resid 5
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x -0.4777 0.1878 -2.54 0.0516 -0.8457 -0.1097
intercept 41.4621 2.9518 14.05 0.0000 35.6766 47.2476
---------------------------------End of Summary---------------------------------
一
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 6
Number of Degrees of Freedom: 2
R-squared: 0.8331
Adj R-squared: 0.7914
Rmse: 2.0540
F-stat (1, 4): 19.9712, p-value: 0.0111
Degrees of Freedom: model 1, resid 4
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x -0.4379 0.0980 -4.47 0.0111 -0.6300 -0.2459
intercept 29.6731 1.6640 17.83 0.0001 26.4116 32.9345
---------------------------------End of Summary---------------------------------
二
-------------------------Summary of Regression Analysis-------------------------
Formula: Y ~ <x> + <intercept>
Number of Observations: 5
Number of Degrees of Freedom: 2
R-squared: 0.8788
Adj R-squared: 0.8384
Rmse: 1.0774
F-stat (1, 3): 21.7542, p-value: 0.0186
Degrees of Freedom: model 1, resid 3
-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x -0.2399 0.0514 -4.66 0.0186 -0.3407 -0.1391
intercept 24.0902 0.9009 26.74 0.0001 22.3246 25.8559
---------------------------------End of Summary---------------------------------
1 个回答
4
你可能会觉得我这个问题有帮助,如何从Pandas回归中绘制回归线
我试着找一些我用Pandas做的普通最小二乘法(ols)绘图的代码,但找不到。一般来说,使用Statsmodels会更好,因为它对Pandas的数据结构比较了解,所以转换起来不会太难。这样我的回答和提到的例子就更容易理解了。