从中心坐标重采样到外部(即角落)坐标

5 投票
2 回答
1788 浏览
提问于 2025-04-18 00:00

有没有简单的方法可以从网格中心的位置(红点)推算出网格角落的位置(蓝点)呢?

我现在用的网格不是矩形的,所以普通的双线性插值方法可能不太合适。不过,这只是为了让我能用 pyplot.pcolormesh() 来绘制我的数据,所以也许这并不是特别重要。

这里输入图片描述

示例网格数据

import numpy as np

lons = np.array([[ 109.93299681,  109.08091365,  108.18301276,  107.23602539],
                 [ 108.47911382,  107.60397996,  106.68325946,  105.71386119],
                 [ 107.06790187,  106.17259769,  105.23214707,  104.2436463 ],
                 [ 105.69908292,  104.78633156,  103.82905363,  102.82453812]])

lats = np.array([[ 83.6484245 ,  83.81088466,  83.97177823,  84.13098916],
                 [ 83.55459198,  83.71460466,  83.87294803,  84.02950188],
                 [ 83.4569054 ,  83.61444708,  83.77022192,  83.92410637],
                 [ 83.35554612,  83.51060313,  83.6638013 ,  83.81501464]])

2 个回答

2

这是我用 pyproj 处理问题时采取的一个不太优雅的方法。首先,我使用 pyproj.Geod.inv 计算了两个点之间的距离和方位角,然后再通过 pyproj.Geod.fwd 将这个角度按需要的距离进行插值或外推,最终得到了 psi 位置。

代码:

def calc_psi_coords(lons, lats):
    ''' Calcuate psi points from centered grid points'''

    import numpy as np
    import pyproj

    # Create Geod object with WGS84 ellipsoid
    g = pyproj.Geod(ellps='WGS84')

    # Get grid field dimensions
    ydim, xdim = lons.shape

    # Create empty coord arrays
    lons_psi = np.zeros((ydim+1, xdim+1))
    lats_psi = np.zeros((ydim+1, xdim+1))

    # Calculate internal points
    #--------------------------
    for j in range(ydim-1):
        for i in range(xdim-1):
            lon1 = lons[j,i]     # top left point
            lat1 = lats[j,i]
            lon2 = lons[j+1,i+1] # bottom right point
            lat2 = lats[j+1,i+1]
            # Calc distance between points, find position at half of dist
            fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
            lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*0.5)
            # Assign to psi interior positions
            lons_psi[j+1,i+1] = lon_psi
            lats_psi[j+1,i+1] = lat_psi

    # Caclulate external points (not corners)
    #----------------------------------------
    for j in range(ydim):
        # Left external points
        #~~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[j+1,2] # left inside point
        lat1 = lats_psi[j+1,2]
        lon2 = lons_psi[j+1,1] # left outside point
        lat2 = lats_psi[j+1,1]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[j+1,0] = lon_psi
        lats_psi[j+1,0] = lat_psi

        # Right External points
        #~~~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[j+1,-3] # right inside point
        lat1 = lats_psi[j+1,-3]
        lon2 = lons_psi[j+1,-2] # right outside point
        lat2 = lats_psi[j+1,-2]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[j+1,-1] = lon_psi
        lats_psi[j+1,-1] = lat_psi

    for i in range(xdim):
        # Top external points
        #~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[2,i+1] # top inside point
        lat1 = lats_psi[2,i+1]
        lon2 = lons_psi[1,i+1] # top outside point
        lat2 = lats_psi[1,i+1]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[0,i+1] = lon_psi
        lats_psi[0,i+1] = lat_psi

        # Bottom external points
        #~~~~~~~~~~~~~~~~~~~~~~~
        lon1 = lons_psi[-3,i+1] # bottom inside point
        lat1 = lats_psi[-3,i+1]
        lon2 = lons_psi[-2,i+1] # bottom outside point
        lat2 = lats_psi[-2,i+1]
        # Calc dist between points, find position at dist*2 from pos1
        fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
        lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
        lons_psi[-1,i+1] = lon_psi
        lats_psi[-1,i+1] = lat_psi

    # Calculate corners:
    #-------------------
    # top left corner
    #~~~~~~~~~~~~~~~~
    lon1 = lons_psi[2,2] # bottom right point
    lat1 = lats_psi[2,2]
    lon2 = lons_psi[1,1] # top left point
    lat2 = lats_psi[1,1]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[0,0] = lon_psi
    lats_psi[0,0] = lat_psi
    # top right corner
    #~~~~~~~~~~~~~~~~~
    lon1 = lons_psi[2,-3] # bottom left point
    lat1 = lats_psi[2,-3]
    lon2 = lons_psi[1,-2] # top right point
    lat2 = lats_psi[1,-2]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[0,-1] = lon_psi
    lats_psi[0,-1] = lat_psi
    # bottom left corner
    #~~~~~~~~~~~~~~~~~~~
    lon1 = lons_psi[-3,2] # top right point
    lat1 = lats_psi[-3,2]
    lon2 = lons_psi[-2,1] # bottom left point
    lat2 = lats_psi[-2,1]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[-1,0] = lon_psi
    lats_psi[-1,0] = lat_psi
    # bottom right corner
    #~~~~~~~~~~~~~~~~~~~~
    lon1 = lons_psi[-3,-3] # top left point
    lat1 = lats_psi[-3,-3]
    lon2 = lons_psi[-2,-2] # bottom right point
    lat2 = lats_psi[-2,-2]
    # Calc dist between points, find position at dist*2 from pos1
    fwd_az, bck_az, dist = g.inv(lon1,lat1,lon2,lat2)
    lon_psi, lat_psi, bck_az = g.fwd(lon1,lat1,fwd_az,dist*2.)
    lons_psi[-1,-1] = lon_psi
    lats_psi[-1,-1] = lat_psi

    return lons_psi, lats_psi

示例图片(丹麦/南瑞典附近):

在这里输入图片描述

4

我不知道有没有什么特别好的方法可以用matplotlib来解决你提到的问题,但我有一个不同的解决方案。通常我需要填补或推测一些网格区域的信息,这些地方可能缺少数据。为此,我使用一个Fortran程序,并通过F2PY(这个工具和numpy一起提供)把它编译成一个python模块。如果你有Intel Fortran编译器,可以用以下命令来编译它:f2py --verbose --fcompiler=intelem -c -m extrapolate fill.f90。然后你可以在python中调用这个程序(完整示例可以查看这里):

    import extrapolate as ex
    undef=2.0e+35
    tx=0.9*undef
    critx=0.01
    cor=1.6
    mxs=100

    field = Zg
    field=np.where(abs(field) > 50 ,undef,field)

    field=ex.extrapolate.fill(int(1),int(grdROMS.xi_rho),
                            int(1),int(grdROMS.eta_rho),
                            float(tx), float(critx), float(cor), float(mxs),
                            np.asarray(field, order='Fortran'),
                            int(grdROMS.xi_rho),
                            int(grdROMS.eta_rho))

这个程序通过迭代的方法解决了拉普拉斯方程,并使用了Neumann边界条件(dA/dn = 0),在矩形坐标系中填补那些值为“undef”的网格点,给出合理的数值。对我来说这个方法效果很好,也许你也会觉得有用。这个程序可以在我的github账号上找到,链接在这里

撰写回答