Fortran - Cython 工作流程
我想在Windows电脑上搭建一个工作流程,让Python可以调用Fortran的程序,使用Cython来实现。
经过一番搜索,我找到了以下链接:http://www.fortran90.org/src/best-practices.html#interfacing-with-c 和 https://stackoverflow.com/tags/fortran-iso-c-binding/info
还有一些代码片段:
Fortran部分:
pygfunc.h:
void c_gfunc(double x, int n, int m, double *a, double *b, double *c);
pygfunc.f90
module gfunc1_interface
use iso_c_binding
use gfunc_module
implicit none
contains
subroutine c_gfunc(x, n, m, a, b, c) bind(c)
real(C_FLOAT), intent(in), value :: x
integer(C_INT), intent(in), value :: n, m
type(C_PTR), intent(in), value :: a, b
type(C_PTR), value :: c
real(C_FLOAT), dimension(:), pointer :: fa, fb
real(C_FLOAT), dimension(:,:), pointer :: fc
call c_f_pointer(a, fa, (/ n /))
call c_f_pointer(b, fb, (/ m /))
call c_f_pointer(c, fc, (/ n, m /))
call gfunc(x, fa, fb, fc)
end subroutine
end module
gfunc.f90
module gfunc_module
use iso_c_binding
implicit none
contains
subroutine gfunc(x, a, b, c)
real, intent(in) :: x
real, dimension(:), intent(in) :: a, b
real, dimension(:,:), intent(out) :: c
integer :: i, j, n, m
n = size(a)
m = size(b)
do j=1,m
do i=1,n
c(i,j) = exp(-x * (a(i)**2 + b(j)**2))
end do
end do
end subroutine
end module
Cython部分:
pygfunc.pyx
cimport numpy as cnp
import numpy as np
cdef extern from "./pygfunc.h":
void c_gfunc(double, int, int, double *, double *, double *)
cdef extern from "./pygfunc.h":
pass
def f(float x, a=-10.0, b=10.0, n=100):
cdef cnp.ndarray ax, c
ax = np.arange(a, b, (b-a)/float(n))
n = ax.shape[0]
c = np.ndarray((n,n), dtype=np.float64, order='F')
c_gfunc(x, n, n, <double *> ax.data, <double *> ax.data, <double *> c.data)
return c
还有设置文件:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy as np
ext_modules = [Extension('pygfunc', ['pygfunc.pyx'])]
setup(
name = 'pygfunc',
include_dirs = [np.get_include()],
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules )
所有文件都在同一个文件夹里。
Fortran文件可以编译(使用NAG Fortran Builder),pygfunc也能编译。
但是在链接它们的时候出现了一个错误:
错误 LNK2019: 找不到外部符号 _c_gfunc,出现在函数 ___pyx_pf_7pygfunc_f 中。
当然,还有:
致命错误 LNK1120: 1 个未解决的外部符号。
我漏掉了什么吗?或者说,这种在Python和Fortran之间搭建工作流程的方法从一开始就注定要失败吗?
谢谢,
马丁
1 个回答
这是一个最小的工作示例。我使用了gfortran,并直接在设置文件中写入了编译命令。
gfunc.f90
module gfunc_module
implicit none
contains
subroutine gfunc(x, n, m, a, b, c)
double precision, intent(in) :: x
integer, intent(in) :: n, m
double precision, dimension(n), intent(in) :: a
double precision, dimension(m), intent(in) :: b
double precision, dimension(n, m), intent(out) :: c
integer :: i, j
do j=1,m
do i=1,n
c(i,j) = exp(-x * (a(i)**2 + b(j)**2))
end do
end do
end subroutine
end module
pygfunc.f90
module gfunc1_interface
use iso_c_binding, only: c_double, c_int
use gfunc_module, only: gfunc
implicit none
contains
subroutine c_gfunc(x, n, m, a, b, c) bind(c)
real(c_double), intent(in) :: x
integer(c_int), intent(in) :: n, m
real(c_double), dimension(n), intent(in) :: a
real(c_double), dimension(m), intent(in) :: b
real(c_double), dimension(n, m), intent(out) :: c
call gfunc(x, n, m, a, b, c)
end subroutine
end module
pygfunc.h
extern void c_gfunc(double* x, int* n, int* m, double* a, double* b, double* c);
pygfunc.pyx
from numpy import linspace, empty
from numpy cimport ndarray as ar
cdef extern from "pygfunc.h":
void c_gfunc(double* a, int* n, int* m, double* a, double* b, double* c)
def f(double x, double a=-10.0, double b=10.0, int n=100):
cdef:
ar[double] ax = linspace(a, b, n)
ar[double,ndim=2] c = empty((n, n), order='F')
c_gfunc(&x, &n, &n, <double*> ax.data, <double*> ax.data, <double*> c.data)
return c
setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
# This line only needed if building with NumPy in Cython file.
from numpy import get_include
from os import system
# compile the fortran modules without linking
fortran_mod_comp = 'gfortran gfunc.f90 -c -o gfunc.o -O3 -fPIC'
print fortran_mod_comp
system(fortran_mod_comp)
shared_obj_comp = 'gfortran pygfunc.f90 -c -o pygfunc.o -O3 -fPIC'
print shared_obj_comp
system(shared_obj_comp)
ext_modules = [Extension(# module name:
'pygfunc',
# source file:
['pygfunc.pyx'],
# other compile args for gcc
extra_compile_args=['-fPIC', '-O3'],
# other files to link to
extra_link_args=['gfunc.o', 'pygfunc.o'])]
setup(name = 'pygfunc',
cmdclass = {'build_ext': build_ext},
# Needed if building with NumPy.
# This includes the NumPy headers when compiling.
include_dirs = [get_include()],
ext_modules = ext_modules)
test.py
# A script to verify correctness
from pygfunc import f
print f(1., a=-1., b=1., n=4)
import numpy as np
a = np.linspace(-1, 1, 4)**2
A, B = np.meshgrid(a, a, copy=False)
print np.exp(-(A + B))
我做的大部分修改并不是特别根本。这里是一些重要的修改。
你在混用双精度和单精度浮点数。不要这样做。 在Fortran中使用real,Cython中使用float,NumPy中使用float32;在Fortran中使用双精度,Cython中使用double,NumPy中使用float64。尽量不要无意中混合使用。我在我的示例中假设你想要双精度。
你应该将所有变量作为指针传递给Fortran。这样做与C的调用约定不匹配。Fortran中的iso_c_binding模块只匹配C的命名约定。将数组作为指针传递,并将其大小作为单独的值传递。可能还有其他方法,但我不太了解。
我还在设置文件中添加了一些内容,展示了在构建时可以添加的一些更有用的额外参数。
要编译,运行 python setup.py build_ext --inplace
。要验证它是否有效,运行测试脚本。
这是在fortran90.org上展示的示例: mesh_exp