Python line_profiler 代码示例

24 投票
2 回答
28281 浏览
提问于 2025-04-17 21:47

我正在尝试使用Python的line_profiler来获取逐行执行时间,想要的格式可以参考这个问题的回答。

我已经安装了这个模块,并且像下面这样调用它的LineProfiler对象,但我得到的输出只是一个总时间,而不是逐行的总结。

有没有什么建议?另外,我该如何获取在任何函数外部的numbers = [random.randint(1,100) for i in range(1000)]这一行的执行时间呢?

from line_profiler import LineProfiler
import random

def do_stuff(numbers):

    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
profile = LineProfiler(do_stuff(numbers))
profile.print_stats()
[] Timer unit: 3.20721e-07 s

2 个回答

8

文档中提到:

在你的脚本中,你可以用 @profile 来装饰任何你想要分析的函数。

你想要用 @profile 来装饰你的 do_stuff 函数,然后运行

kernprof -v -l script_to_profile.py

这样就可以在终端上看到带注释的输出。这个分析结果还会被写入 script_to_profile.py.lprof 文件,你可以稍后用

python -m line_profiler script_to_profile.py.lprof

来重新生成输出。

51

line_profiler 的测试案例(可以在 GitHub 上找到)展示了如何在 Python 脚本中生成性能分析数据。你需要把想要分析的函数包裹起来,然后调用这个包裹的函数,并传入你想要的参数。

from line_profiler import LineProfiler
import random

def do_stuff(numbers):
    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

输出结果:

Timer unit: 1e-06 s

Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1           10     10.0      1.5      s = sum(numbers)
     6         1          186    186.0     28.7      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1          453    453.0     69.8      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

添加更多要分析的函数

你还可以添加其他函数进行分析。例如,如果你有一个第二个被调用的函数,而你只包裹了调用的函数,那么你只会看到调用函数的分析结果。

from line_profiler import LineProfiler
import random

def do_other_stuff(numbers):
    s = sum(numbers)

def do_stuff(numbers):
    do_other_stuff(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

上面的操作只会为调用函数生成以下的分析输出:

Timer unit: 1e-06 s

Total time: 0.000773 s
File: <ipython-input-3-ec0394d0a501>
Function: do_stuff at line 7

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           def do_stuff(numbers):
     8         1           11     11.0      1.4      do_other_stuff(numbers)
     9         1          236    236.0     30.5      l = [numbers[i]/43 for i in range(len(numbers))]
    10         1          526    526.0     68.0      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

在这种情况下,你可以像这样添加额外的被调用函数进行分析:

from line_profiler import LineProfiler
import random

def do_other_stuff(numbers):
    s = sum(numbers)

def do_stuff(numbers):
    do_other_stuff(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp.add_function(do_other_stuff)   # add additional function to profile
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

输出结果:

Timer unit: 1e-06 s

Total time: 9e-06 s
File: <ipython-input-4-dae73707787c>
Function: do_other_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_other_stuff(numbers):
     5         1            9      9.0    100.0      s = sum(numbers)

Total time: 0.000694 s
File: <ipython-input-4-dae73707787c>
Function: do_stuff at line 7

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           def do_stuff(numbers):
     8         1           12     12.0      1.7      do_other_stuff(numbers)
     9         1          208    208.0     30.0      l = [numbers[i]/43 for i in range(len(numbers))]
    10         1          474    474.0     68.3      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

注意:以这种方式添加要分析的函数不需要修改被分析的代码(也就是说,不需要添加 @profile 装饰器)。

撰写回答