使用Python统计TSV文件某列中单词出现次数

1 投票
1 回答
977 浏览
提问于 2025-04-17 21:41

这是一个来自Python初学者的问题!我有一个tsv文件,内容大致是这样的:

WHI5    YOR083W CDC28   YBR160W physical interactions   19823668
WHI5    YOR083W CDC28   YBR160W physical interactions   21658602
WHI5    YOR083W CDC28   YBR160W physical interactions   24186061
WHI5    YOR083W RPD3    YNL330C physical interactions   19823668
WHI5    YOR083W SWI4    YER111C physical interactions   15210110
WHI5    YOR083W SWI4    YER111C physical interactions   15210111

我想统计所有在第3列中包含相同单词的行,并且只输出第一次出现的那个单词,以及它出现的次数,放在一个新的列里。

WHI5    YOR083W CDC28   YBR160W physical interactions   19823668    3
WHI5    YOR083W RPD3    YNL330C physical interactions   19823668    1
WHI5    YOR083W SWI4    YER111C physical interactions   15210110    2

到目前为止,我尝试过把'csv'和'Counter',或者'pandas'和'Counter'结合使用,但都没有成功……

1 个回答

3

使用pandas库:

>>> import pandas as pd
>>> from io import BytesIO
>>> df = pd.read_table(BytesIO("""\
... col1 col2 col3 col4 col5 col6
... WHI5    YOR083W CDC28   YBR160W "physical interactions"   19823668
... WHI5    YOR083W CDC28   YBR160W "physical interactions"   21658602
... WHI5    YOR083W CDC28   YBR160W "physical interactions"   24186061
... WHI5    YOR083W RPD3    YNL330C "physical interactions"   19823668
... WHI5    YOR083W SWI4    YER111C "physical interactions"   15210110
... WHI5    YOR083W SWI4    YER111C "physical interactions"   15210111"""),
... delim_whitespace=True)

pandas的数据框看起来会是这样的:

>>> df
   col1     col2   col3     col4                   col5      col6
0  WHI5  YOR083W  CDC28  YBR160W  physical interactions  19823668
1  WHI5  YOR083W  CDC28  YBR160W  physical interactions  21658602
2  WHI5  YOR083W  CDC28  YBR160W  physical interactions  24186061
3  WHI5  YOR083W   RPD3  YNL330C  physical interactions  19823668
4  WHI5  YOR083W   SWI4  YER111C  physical interactions  15210110
5  WHI5  YOR083W   SWI4  YER111C  physical interactions  15210111

[6 rows x 6 columns]

要计算数量,可以根据col3进行分组,然后计算每个组的长度:

>>> df['cnt'] = df.groupby('col3')['col3'].transform(len)
>>> df
   col1     col2   col3     col4                   col5      col6 cnt
0  WHI5  YOR083W  CDC28  YBR160W  physical interactions  19823668   3
1  WHI5  YOR083W  CDC28  YBR160W  physical interactions  21658602   3
2  WHI5  YOR083W  CDC28  YBR160W  physical interactions  24186061   3
3  WHI5  YOR083W   RPD3  YNL330C  physical interactions  19823668   1
4  WHI5  YOR083W   SWI4  YER111C  physical interactions  15210110   2
5  WHI5  YOR083W   SWI4  YER111C  physical interactions  15210111   2

[6 rows x 7 columns]

要选择每个组的第一个元素:

>>> df.groupby('col3').apply(lambda obj: obj.head(n=1))
         col1     col2   col3     col4                   col5      col6 cnt
col3
CDC28 0  WHI5  YOR083W  CDC28  YBR160W  physical interactions  19823668   3
RPD3  3  WHI5  YOR083W   RPD3  YNL330C  physical interactions  19823668   1
SWI4  4  WHI5  YOR083W   SWI4  YER111C  physical interactions  15210110   2

[3 rows x 7 columns]

撰写回答