sklearn如何处理missing_values='?

0 投票
1 回答
642 浏览
提问于 2025-04-17 21:13

假设我有一个.txt文件,里面的内容是

2,3,4,?,5

我想把缺失的值'?'替换成其他数据的平均值,有什么好主意吗?如果是字符串列表,我想把'?'替换成出现频率最高的字符串,比如说'a'

'a','b','c','?','a','a'

我试过一些方法,但都不行。我最开始使用了

import numpy as np
from sklearn.preprocessing import Imputer

row = np.genfromtxt('a.txt',missing_values='?',dtype=float,delimiter=',',usemask=True)
# this will give: row = [2 3 4 -- 5]. I checked it will use filling_values=-1 to replace missing data
# but if I add 'filling_values=np.nan' in it, it will cause error,'cannot convert float into int'

imp = Imputer(missing_values=-1, strategy='mean')
imp.fit_transform(row)
# this will give: array([2., 3., 4.,5.], which did not replace missing_value by mean value.

如果我能把'?'替换成np.nan,我觉得我可以做到。

1 个回答

1

我无法重现你说的错误,'无法将浮点数转换为整数'。

试试这个:

>>> row = np.genfromtxt('a.txt',missing_values='?',dtype=float,delimiter=',')
>>> np.mean(row[~np.isnan(row)])
3.5
>>> mean = np.mean(row[~np.isnan(row)])
>>> row[np.isnan(row)] = mean
>>> row
array([ 2. ,  3. ,  4. ,  3.5,  5. ])

补充说明

如果你想使用字符串,这里有一个用普通列表的解决方案。

>>> row = ['a','b','c','?','c','b','?','?','b']
>>> from collections import Counter
>>> letter_counts = Counter(letter for letter in row if letter != '?')
>>> letter_counts.most_common(1)
[('b', 3)]
>>> most_common_letter = letter_counts.most_common(1)[0][0]
>>> [letter if letter != '?' else most_common_letter
...     for letter in row]
['a', 'b', 'c', 'b', 'c', 'b', 'b', 'b', 'b']

撰写回答