为什么scipy.optimize.curve_fit不适合数据?
我一直在尝试用scipy.optimize.curve_fit这个工具来给一些数据拟合一个指数曲线,但遇到了很大的困难。我真的看不出为什么这个方法不奏效,它只给我画出了一条直线,我也不知道为什么会这样!
如果有人能帮帮我,我会非常感激。
from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot
def func(x,a,b,c):
return a*numpy.exp(-b*x)-c
yData = numpy.load('yData.npy')
xData = numpy.load('xData.npy')
trialX = numpy.linspace(xData[0],xData[-1],1000)
# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trailX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = curve_fit(func, xData, yData)
yEXP = func(trialX, *popt)
pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX, y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()
xData = [1e-06, 2e-06, 3e-06, 4e-06,
5e-06, 6e-06, 7e-06, 8e-06,
9e-06, 1e-05, 2e-05, 3e-05,
4e-05, 5e-05, 6e-05, 7e-05,
8e-05, 9e-05, 0.0001, 0.0002,
0.0003, 0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009, 0.001,
0.002, 0.003, 0.004, 0.005,
0.006, 0.007, 0.008, 0.009, 0.01]
yData =
[6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08, 3.38556130078e-08, 3.55765277358e-08,
4.13818145846e-08, 4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08, 1.45110636413e-07,
1.83066627931e-07, 2.10138415308e-07, 2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07, 5.98480176303e-07, 6.57028222701e-07,
6.98347073045e-07, 7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07, 7.87147246927e-07,
7.99607141001e-07, 8.61398763228e-07, 8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07, 9.16878548643e-07, 9.18389990067e-07]
3 个回答
-5
这个模型 a*exp(-b*x)+c
对数据的拟合效果很好,但我建议稍微改一下:
可以用这个代替
a*x*exp(-b*x)+c
祝好运!
26
这个解决方案有一个(稍微的)改进,假设我们对数据没有任何先验知识,可以这样做:取数据集的倒数平均值,然后把这个值当作“缩放因子”,传递给curve_fit()中调用的leastsq()。这样做可以让拟合器正常工作,并返回与原始数据相同尺度的参数。
相关的代码行是:
popt, pcov = curve_fit(func, xData, yData)
这行代码变成:
popt, pcov = curve_fit(func, xData, yData,
diag=(1./xData.mean(),1./yData.mean()) )
下面是一个完整的例子,它会生成这个图像:
from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot
def func(x,a,b,c):
return a*numpy.exp(-b*x)-c
xData = numpy.array([1e-06, 2e-06, 3e-06, 4e-06, 5e-06, 6e-06,
7e-06, 8e-06, 9e-06, 1e-05, 2e-05, 3e-05, 4e-05, 5e-05, 6e-05,
7e-05, 8e-05, 9e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005,
0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005
, 0.006, 0.007, 0.008, 0.009, 0.01])
yData = numpy.array([6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08,
3.38556130078e-08, 3.55765277358e-08, 4.13818145846e-08,
4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08,
1.45110636413e-07, 1.83066627931e-07, 2.10138415308e-07,
2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07,
5.98480176303e-07, 6.57028222701e-07, 6.98347073045e-07,
7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07,
7.87147246927e-07, 7.99607141001e-07, 8.61398763228e-07,
8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07,
9.16878548643e-07, 9.18389990067e-07])
trialX = numpy.linspace(xData[0],xData[-1],1000)
# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trialX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = curve_fit(func, xData, yData,
diag=(1./xData.mean(),1./yData.mean()) )
yEXP = func(trialX, *popt)
pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX, y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()
44
数值算法在处理非常小(或非常大)的数字时,通常效果不好。
在这个例子中,图表显示你的数据的 x 和 y 值都非常小。如果你对它们进行缩放,结果会好很多:
xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5
from __future__ import division
import os
os.chdir(os.path.expanduser('~/tmp'))
import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt
def func(x,a,b,c):
return a*np.exp(-b*x)-c
xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5
print(xData.min(), xData.max())
print(yData.min(), yData.max())
trialX = np.linspace(xData[0], xData[-1], 1000)
# Fit a polynomial
fitted = np.polyfit(xData, yData, 10)[::-1]
y = np.zeros(len(trialX))
for i in range(len(fitted)):
y += fitted[i]*trialX**i
# Fit an exponential
popt, pcov = optimize.curve_fit(func, xData, yData)
print(popt)
yEXP = func(trialX, *popt)
plt.figure()
plt.plot(xData, yData, label='Data', marker='o')
plt.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
plt.plot(trialX, y, label = '10 Deg Poly')
plt.legend()
plt.show()
注意,在重新缩放 xData
和 yData
之后,curve_fit
返回的参数也必须进行缩放。在这个例子中,a
、b
和 c
每个都需要除以 10**5,才能得到原始数据的拟合参数。
你可能会对上面的内容有一个疑问,那就是缩放的选择需要非常“谨慎”。(换句话说:并不是每个合理的缩放选择都有效!)
你可以通过提供合理的初始参数猜测来提高 curve_fit
的稳定性。通常你对数据会有一些先验知识,这可以帮助你做出大致的、粗略的参数值猜测。
例如,调用 curve_fit
时使用
guess = (-1, 0.1, 0)
popt, pcov = optimize.curve_fit(func, xData, yData, guess)
可以帮助扩展 curve_fit
成功的缩放范围。