在pandas数据框中添加新列并进行列运算

0 投票
1 回答
1901 浏览
提问于 2025-04-17 19:30
In [1]: from datetime import datetime

In [2]: import os

In [3]: import pandas as pd

In [4]: file_path = os.path.normpath('F:/EUR/data.csv')

In [5]: parse = lambda x: datetime.strptime(x, '%d.%m.%Y %H:%M:%S')

In [6]: df = pd.read_csv(file_path, parse_dates=[[0, 1]], date_parser=parse, ind
ex_col=[0], header=None)

In [7]: keys = ['Open', 'High', 'Low', 'Close']

In [8]: df.columns = [x for x in keys]

In [9]: grouped = df.groupby([df.index.year, df.index.day])
In [10]: df[:5]
Out[10]:
                           Open    High     Low   Close
0_1
2007-01-02 23:30:00  1.3198  1.3205  1.3197  1.3203
2007-01-02 00:00:00  1.3203  1.3206  1.3200  1.3205
2007-01-02 00:30:00  1.3205  1.3213  1.3205  1.3212
2007-01-02 01:00:00  1.3212  1.3217  1.3211  1.3214
2007-01-02 01:30:00  1.3214  1.3226  1.3213  1.3225

1. 我想对一个分组后的对象进行简单的数学运算,并把结果放到一个新列里,比如说:
如果 df['Close'] 大于 df['Open']:
df['sum'] = df['Close'] - df['Open']

2. 还有,我为什么不能像这样分组:grouped = df.groupby([df.index.year, df.index.day, df['Close'] > df['Open']])

我对 groupby 的工作原理不是很理解。

3. 我该如何把结果放到一个新列里,比如说:
对于 (k1, k2), group in grouped:
df['new_col'] = group[group['Close'] > group['Open']]['Close'] - group[group['Close'] > group['Open']]['Open']

或者也许有更好的方法。

1 个回答

1

你试过这个吗?

grouped = df.groupby([df.index.year,df.index.day])
df['sum'] = grouped.apply(lambda x: x.Open + x.Close)

撰写回答