在原处修改scipy稀疏矩阵
基本上,我只是想做一个简单的矩阵乘法,具体来说,就是提取矩阵的每一列,然后通过除以它的长度来进行归一化处理。
#csc sparse matrix
self.__WeightMatrix__ = self.__WeightMatrix__.tocsc()
#iterate through columns
for Col in xrange(self.__WeightMatrix__.shape[1]):
Column = self.__WeightMatrix__[:,Col].data
List = [x**2 for x in Column]
#get the column length
Len = math.sqrt(sum(List))
#here I assumed dot(number,Column) would do a basic scalar product
dot((1/Len),Column)
#now what? how do I update the original column of the matrix, everything that have been returned are copies, which drove me nuts and missed pointers so much
我查阅了scipy稀疏矩阵的文档,但没有找到有用的信息。我希望能有一个函数返回矩阵的指针或引用,这样我就可以直接修改它的值。谢谢。
1 个回答
6
在CSC格式中,你有两个可以写入的属性,data
和indices
。它们分别存储了矩阵中非零的数值和对应的行索引。你可以利用这些属性来实现你的需求,方法如下:
def sparse_row_normalize(sps_mat) :
if sps_mat.format != 'csc' :
msg = 'Can only row-normalize in place with csc format, not {0}.'
msg = msg.format(sps_mat.format)
raise ValueError(msg)
row_norm = np.sqrt(np.bincount(sps_mat.indices, weights=mat.data * mat_data))
sps_mat.data /= np.take(row_norm, sps_mat.indices)
为了验证这个方法确实有效:
>>> mat = scipy.sparse.rand(4, 4, density=0.5, format='csc')
>>> mat.toarray()
array([[ 0. , 0. , 0.58931687, 0.31070526],
[ 0.24024639, 0.02767106, 0.22635696, 0.85971295],
[ 0. , 0. , 0.13613897, 0. ],
[ 0. , 0.13766507, 0. , 0. ]])
>>> mat.toarray() / np.sqrt(np.sum(mat.toarray()**2, axis=1))[:, None]
array([[ 0. , 0. , 0.88458487, 0.46637926],
[ 0.26076366, 0.03003419, 0.24568806, 0.93313324],
[ 0. , 0. , 1. , 0. ],
[ 0. , 1. , 0. , 0. ]])
>>> sparse_row_normalize(mat)
>>> mat.toarray()
array([[ 0. , 0. , 0.88458487, 0.46637926],
[ 0.26076366, 0.03003419, 0.24568806, 0.93313324],
[ 0. , 0. , 1. , 0. ],
[ 0. , 1. , 0. , 0. ]])
而且这个方法也很快,使用numpy可以避免Python中的循环,让操作更加高效:
In [2]: mat = scipy.sparse.rand(10000, 10000, density=0.005, format='csc')
In [3]: mat
Out[3]:
<10000x10000 sparse matrix of type '<type 'numpy.float64'>'
with 500000 stored elements in Compressed Sparse Column format>
In [4]: %timeit sparse_row_normalize(mat)
100 loops, best of 3: 14.1 ms per loop