Pandas read_csv(): 保留0为0(不转换为NaN)

1 投票
1 回答
4525 浏览
提问于 2025-04-17 14:57

我正在尝试读取一个csv文件,下面是一个示例:

datetime,check,lat,lon,co_alpha,atn,status,bc
2012-10-27 15:00:59,2,0,0,2.427,,,
2012-10-27 15:01:00,2,0,0,2.407,,,
2012-10-27 15:02:49,2,0,0,2.207,-17.358,0,-16162
2012-10-27 15:02:50,2,0,0,2.207,-17.354,0,8192
2012-10-27 15:02:51,1,0,0,2.207,-17.358,0,-8152
2012-10-27 15:02:52,1,0,0,2.207,-17.358,0,648
2012-10-27 15:06:03,0,51.195076,4.444407,2.349,-17.289,0,4909
2012-10-27 15:06:04,0,51.195182,4.44427,2.344,-17.289,0,587
2012-12-05 09:21:34,,,,,42.960,1,16430
2012-12-05 09:21:35,,,,,42.962,1,3597

我遇到的问题是,在只有整数的列中,0被转换成了NaN(比如'check'和'status'这两列,它们本来都是整数,但因为有真实的缺失值,所以这一列被读取成了浮点数)。但我只希望空值被转换成NaN,而不是0。

这是我得到的结果:

>>> pd.read_clipboard(sep=',', parse_dates=True, index_col=0)
                     check        lat       lon  co_alpha     atn  status     bc
datetime                                                                        
2012-10-27 15:00:59      2   0.000000  0.000000     2.427     NaN     NaN    NaN
2012-10-27 15:01:00      2   0.000000  0.000000     2.407     NaN     NaN    NaN
2012-10-27 15:02:49      2   0.000000  0.000000     2.207 -17.358     NaN -16162
2012-10-27 15:02:50      2   0.000000  0.000000     2.207 -17.354     NaN   8192
2012-10-27 15:02:51      1   0.000000  0.000000     2.207 -17.358     NaN  -8152
2012-10-27 15:02:52      1   0.000000  0.000000     2.207 -17.358     NaN    648
2012-10-27 15:06:03    NaN  51.195076  4.444407     2.349 -17.289     NaN   4909
2012-10-27 15:06:04    NaN  51.195182  4.444270     2.344 -17.289     NaN    587
2012-12-05 09:21:34    NaN        NaN       NaN       NaN  42.960       1  16430
2012-12-05 09:21:35    NaN        NaN       NaN       NaN  42.962       1   3597

所以,在'check'和'status'这两列中,有太多的NaN。而在'lat'和'lon'这两列中,0并没有被转换成NaN。

  • 使用 na_values=''keep_default_na=False 并没有帮助。有没有办法指定不把整数0转换成NaN?还是说这是个bug?

  • 我可以用 dtype 关键字指定特定列的数据类型为整数,这样0就会保持为0,但问题是这些列也包含真实的NaN(空值)。所以在这种情况下,这些值也会被转换成0,因为在整数列中不能有NaN。因此,我必须把所有列都保持为浮点数。


编辑:在升级到pandas 0.10.1后,即使不指定 keep_default_nana_values,它也能按预期工作:

>>> pd.read_clipboard(sep=',', parse_dates=True, index_col=0)
                     check        lat       lon  co_alpha     atn  status     bc
datetime                                                                        
2012-10-27 15:00:59      2   0.000000  0.000000     2.427     NaN     NaN    NaN
2012-10-27 15:01:00      2   0.000000  0.000000     2.407     NaN     NaN    NaN
2012-10-27 15:02:49      2   0.000000  0.000000     2.207 -17.358       0 -16162
2012-10-27 15:02:50      2   0.000000  0.000000     2.207 -17.354       0   8192
2012-10-27 15:02:51      1   0.000000  0.000000     2.207 -17.358       0  -8152
2012-10-27 15:02:52      1   0.000000  0.000000     2.207 -17.358       0    648
2012-10-27 15:06:03      0  51.195076  4.444407     2.349 -17.289       0   4909
2012-10-27 15:06:04      0  51.195182  4.444270     2.344 -17.289       0    587
2012-12-05 09:21:34    NaN        NaN       NaN       NaN  42.960       1  16430
2012-12-05 09:21:35    NaN        NaN       NaN       NaN  42.962       1   3597

1 个回答

5

你首先需要把 keep_default_na 设置为 False

df = pd.read_clipboard(sep=',', index_col=0, keep_default_na=False, na_values='')

In [2]: df
Out[2]: 
                     check        lat       lon  co_alpha     atn  status     bc
datetime                                                                        
2012-10-27 15:00:59      2   0.000000  0.000000     2.427     NaN     NaN    NaN
2012-10-27 15:01:00      2   0.000000  0.000000     2.407     NaN     NaN    NaN
2012-10-27 15:02:49      2   0.000000  0.000000     2.207 -17.358       0 -16162
2012-10-27 15:02:50      2   0.000000  0.000000     2.207 -17.354       0   8192
2012-10-27 15:02:51      1   0.000000  0.000000     2.207 -17.358       0  -8152
2012-10-27 15:02:52      1   0.000000  0.000000     2.207 -17.358       0    648
2012-10-27 15:06:03      0  51.195076  4.444407     2.349 -17.289       0   4909
2012-10-27 15:06:04      0  51.195182  4.444270     2.344 -17.289       0    587
2012-12-05 09:21:34    NaN        NaN       NaN       NaN  42.960       1  16430
2012-12-05 09:21:35    NaN        NaN       NaN       NaN  42.962       1   3597

这是来自 read_tables 的文档说明:

keep_default_na : 布尔值,默认是 True
     如果你指定了 na_values 并且把 keep_default_na 设置为 False,那么默认的 NaN
    值会被覆盖,否则会被添加到列表中

na_values : 类似列表或字典,默认是 None
    额外的 字符串,用来识别为 NA/NaN。如果传入字典,可以为每一列指定 NA 值

撰写回答