Numpy __getitem__ 延迟计算与 a[-1:] 和 a[slice(-1, None, None)] 不相同

8 投票
2 回答
979 浏览
提问于 2025-04-17 13:52

我有两个问题,感觉是同一个基本概念搞混了。希望这样没问题。

这里有段代码:

import numpy as np

class new_array(np.ndarray):

    def __new__(cls, array, foo):
        obj = array.view(cls)
        obj.foo = foo
        return obj

    def __array_finalize__(self, obj):
        print "__array_finalize"
        if obj is None: return
        self.foo = getattr(obj, 'foo', None)

    def __getitem__(self, key):
        print "__getitem__"
        print "key is %s"%repr(key)
        print "self.foo is %d, self.view(np.ndarray) is %s"%(
            self.foo,
            repr(self.view(np.ndarray))
            )
        self.foo += 1
        return super(new_array, self).__getitem__(key)

print "Block 1"
print "Object construction calls"
base_array = np.arange(20).reshape(4,5)
print "base_array is %s"%repr(base_array)
p = new_array(base_array, 0)
print "\n\n"

print "Block 2"
print "Call sequence for p[-1:] is:"
p[-1:]
print "p[-1].foo is %d\n\n"%p.foo

print "Block 3"
print "Call sequence for s = p[-1:] is:"
s = p[-1:]
print "p[-1].foo is now %d"%p.foo
print "s.foo is now %d"%s.foo
print "s.foo + p.foo = %d\n\n"%(s.foo + p.foo)

print "Block 4"
print "Doing q = s + s"
q = s + s
print "q.foo = %d\n\n"%q.foo

print "Block 5"
print "Printing s"
print repr(s)
print "p.foo is now %d"%p.foo
print "s.foo is now %d\n\n"%s.foo

print "Block 6"
print "Printing q"
print repr(q)
print "p.foo is now %d"%p.foo
print "s.foo is now %d"%s.foo
print "q.foo is now %d\n\n"%q.foo

print "Block 7"
print "Call sequence for p[-1]"
a = p[-1]
print "p[-1].foo is %d\n\n"%a.foo

print "Block 8"
print "Call sequence for p[slice(-1, None, None)] is:"
a = p[slice(-1, None, None)]
print "p[slice(None, -1, None)].foo is %d"%a.foo
print "p.foo is %d"%p.foo
print "s.foo + p.foo = %d\n\n"%(s.foo + p.foo)

这段代码的输出是:

Block 1
Object construction calls
base_array is array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])
__array_finalize



Block 2
Call sequence for p[-1:] is:
__array_finalize
p[-1].foo is 0


Block 3
Call sequence for s = p[-1:] is:
__array_finalize
p[-1].foo is now 0
s.foo is now 0
s.foo + p.foo = 0


Block 4
Doing q = s + s
__array_finalize
q.foo = 0


Block 5
Printing s
__getitem__
key is -1
self.foo is 0, self.view(np.ndarray) is array([[15, 16, 17, 18, 19]])
__array_finalize
__getitem__
key is -5
self.foo is 1, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
__getitem__
key is -4
self.foo is 2, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
__getitem__
key is -3
self.foo is 3, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
__getitem__
key is -2
self.foo is 4, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
__getitem__
key is -1
self.foo is 5, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
new_array([[15, 16, 17, 18, 19]])
p.foo is now 0
s.foo is now 1


Block 6
Printing q
__getitem__
key is -1
self.foo is 0, self.view(np.ndarray) is array([[30, 32, 34, 36, 38]])
__array_finalize
__getitem__
key is -5
self.foo is 1, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
__getitem__
key is -4
self.foo is 2, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
__getitem__
key is -3
self.foo is 3, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
__getitem__
key is -2
self.foo is 4, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
__getitem__
key is -1
self.foo is 5, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
new_array([[30, 32, 34, 36, 38]])
p.foo is now 0
s.foo is now 1
q.foo is now 1


Block 7
Call sequence for p[-1]
__getitem__
key is -1
self.foo is 0, self.view(np.ndarray) is array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])
__array_finalize
p[-1].foo is 1


Block 8
Call sequence for p[slice(-1, None, None)] is:
__getitem__
key is slice(-1, None, None)
self.foo is 1, self.view(np.ndarray) is array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])
__array_finalize
p[slice(None, -1, None)].foo is 2
p.foo is 2
s.foo + p.foo = 3

请注意两点:

  1. 调用 p[-1:] 并不会触发 new_array.__getitem__。如果把 p[-1:] 换成 p[0:]p[0:-1] 等等,情况也是一样。但像 p[-1]p[slice(-1, None, None)] 这样的调用会触发 new_array.__getitem__。对于像 p[-1:] + p[-1:]s = p[-1] 这样的语句也是如此,但 print s 就不会触发。你可以通过上面提到的“块”来观察这一点。

  2. 在调用 new_array.__getitem__ 时,变量 foo 会被正确更新(见块 5 和 6),但在 new_array.__getitem__ 执行完后,foo 的值就不对了(再次见块 5 和 6)。我还要补充一点,把 return super(new_array, self).__getitem__(key) 这一行替换成 return new_array(np.array(self.view(np.ndarray)[key]), self.foo) 也不行。以下的块是输出的唯一不同之处。

    Block 5
    Printing s
    __getitem__
    key is -1
    self.foo is 0, self.view(np.ndarray) is array([[15, 16, 17, 18, 19]])
    __array_finalize__
    __getitem__
    key is -5
    self.foo is 1, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -4
    self.foo is 2, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -3
    self.foo is 3, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -2
    self.foo is 4, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -1
    self.foo is 5, self.view(np.ndarray) is array([15, 16, 17, 18, 19])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    new_array([[15, 16, 17, 18, 19]])
    p.foo is now 0
    s.foo is now 1
    
    
    Block 6
    Printing q
    __getitem__
    key is -1
    self.foo is 0, self.view(np.ndarray) is array([[30, 32, 34, 36, 38]])
    __array_finalize__
    __getitem__
    key is -5
    self.foo is 1, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -4
    self.foo is 2, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -3
    self.foo is 3, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -2
    self.foo is 4, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    __getitem__
    key is -1
    self.foo is 5, self.view(np.ndarray) is array([30, 32, 34, 36, 38])
    __array_finalize__
    __array_finalize__
    __array_finalize__
    new_array([[30, 32, 34, 36, 38]])
    p.foo is now 0
    s.foo is now 1
    q.foo is now 1
    

    这现在包含了过多的 new_array.__array_finalize__ 调用,但 foo 的“问题”没有改变。

  3. 我原本以为,像 p[-1:] 这样的调用会让 p.foo = 0 后,p.foo == 1 返回 True。显然不是这样,即使在调用 __getitem__foo 被正确更新,因为像 p[-1:] 这样的调用会导致大量的 __getitem__ 调用(考虑到延迟计算)。而且 p[-1:]p[slice(-1, None, None)]foo 值会不同(如果计数正常的话)。在前者中,foo 会加上 5,而在后者中,foo 会加上 1

问题

虽然 numpy 数组切片的延迟计算不会在我的代码执行时造成问题,但在用 pdb 调试我的一些代码时却非常麻烦。基本上,语句在运行时和在 pdb 中的表现似乎不同。我觉得这不好。这就是我发现这种行为的原因。

我的代码使用传给 __getitem__ 的输入来判断应该返回什么类型的对象。在某些情况下,它返回同一类型的新实例,在其他情况下,它返回其他类型的新实例,或者返回一个 numpy 数组、标量或浮点数(具体取决于底层 numpy 数组认为正确的是什么)。我使用传给 __getitem__ 的键来确定返回哪个正确的对象。但如果用户传入的是切片,比如 p[-1:],我就无法做到这一点,因为这个方法只会得到单个索引,就像用户写 p[4] 一样。那么,如果我 numpy 子类的 __getitem__ 中的 key 无法反映用户是请求切片(如 p[-1:]),还是仅仅是某个元素(如 p[4]),我该怎么做呢?

顺便提一下,numpy 索引 的文档暗示切片对象,比如 slice(start, stop, step) 会和像 start:stop:step 这样的语句被视为相同。这让我觉得我可能漏掉了一些非常基本的东西。这个暗示出现在很早的地方:

基本切片发生在对象是切片对象(通过在括号内使用 start:stop:step 语法构造)时,或者是整数,或者是切片对象和整数的元组。

我不禁觉得,这个基本错误也是我认为 self.foo += 1 这一行应该计算用户请求切片或实例元素的次数(而不是切片中元素的数量)的原因。这两个问题实际上是相关的吗?如果是的话,怎么相关呢?

2 个回答

0

使用 isinstance 方法来检查一个对象是否是切片类型。

from __future__ import print_function

class SliceExample(object):
    def __getitem__(self, key):
        if isinstance(key, slice):
            return key.start, key.stop
        return key

sl = SliceExample()

print(repr(sl[1]))
print(repr(sl[1:2]))
8

你确实遇到了一个麻烦的错误。知道我不是唯一一个遇到这个问题的人,心里稍微轻松了一点!幸运的是,这个问题很容易解决。只需要在你的类里面加上类似下面的代码。这实际上是我几个月前写的一段代码的复制粘贴,文档字符串大致说明了发生了什么,但你可能还想看看Python的文档

def __getslice__(self, start, stop) :
    """This solves a subtle bug, where __getitem__ is not called, and all
    the dimensional checking not done, when a slice of only the first
    dimension is taken, e.g. a[1:3]. From the Python docs:
       Deprecated since version 2.0: Support slice objects as parameters
       to the __getitem__() method. (However, built-in types in CPython
       currently still implement __getslice__(). Therefore, you have to
       override it in derived classes when implementing slicing.)
    """
    return self.__getitem__(slice(start, stop))

撰写回答