如何使均值漂移聚类支持超过五个簇?
我在使用均值漂移聚类时遇到了一些问题。它在聚类数量少的时候(比如2、3、4个聚类)运行得很快,结果也很准确,但当聚类数量增加时,它就出问题了。
比如说,3个聚类检测得很好:
但是当聚类数量增加时,它就失败了:
这里是完整的代码列表:
#!/usr/bin/env python
import sys
import logging
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plot
from sklearn.cluster import estimate_bandwidth, MeanShift, get_bin_seeds
from sklearn.datasets.samples_generator import make_blobs
def test_mean_shift():
logging.debug('Generating mixture')
count = 5000
blocks = 7
std_error = 0.5
mixture, clusters = make_blobs(n_samples=count, centers=blocks, cluster_std=std_error)
logging.debug('Measuring bendwith')
bandwidth = estimate_bandwidth(mixture)
logging.debug('Bandwidth: %r' % bandwidth)
mean_shift = MeanShift(bandwidth=bandwidth)
logging.debug('Clustering')
mean_shift.fit(mixture)
shifted = mean_shift.cluster_centers_
guess = mean_shift.labels_
logging.debug('Centers: %r' % shifted)
def draw_mixture(mixture, clusters, output='mixture.png'):
plot.clf()
plot.scatter(mixture[:, 0], mixture[:, 1],
c=clusters,
cmap=plot.cm.coolwarm)
plot.savefig(output)
def draw_mixture_shifted(mixture, shifted, output='mixture_shifted.png'):
plot.clf()
plot.scatter(mixture[:, 0], mixture[:, 1], c='r')
plot.scatter(shifted[:, 0], shifted[:, 1], c='b')
plot.savefig(output)
logging.debug('Drawing')
draw_mixture_shifted(mixture, shifted)
draw_mixture(mixture, guess)
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
test_mean_shift()
我哪里做错了呢?
1 个回答
1
你可能需要选择一个更小的带宽。我对带宽是怎么通过启发式方法选择的不是很了解。所以这里的问题其实出在启发式方法上,而不是实际的算法。