特征分解误差容忍度

4 投票
1 回答
1470 浏览
提问于 2025-04-17 13:31

我有一个很简单的问题,跟计算误差有关。

让我来做一个矩阵A的特征分解,把它分解成特征向量V和对角特征值D,然后再通过乘法V^-1*D*V把它重建回来。

但是重建出来的值和原来的A差得很远,误差相当大。

我想知道我是不是用了不正确的函数来完成这个任务,或者至少我该如何减少这个误差。谢谢!

in[1]:import numpy
      from scipy import linalg
      A=matrix([[16,-9,0],[-9,20,-11],[0,-11,11]])
      D,V=linalg.eig(A)
      D=diagflat(D)
      matrix(linalg.inv(V))*matrix(D)*matrix(V)


out[1]:matrix([[ 15.52275377,   9.37603361,   0.79257097],  
       [9.37603361,  21.12538282, -10.23535271],  
       [0.79257097, -10.23535271,  10.35186341]])

1 个回答

6

这不是反过来了吗?根据定义,A*V = V*D,所以可以得出A = V*D*V^(-1)

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.matrix([[16,-9,0],[-9,20,-11],[0,-11,11]])
>>> D, V = linalg.eig(A)
>>> D = np.diagflat(D)
>>> 
>>> b = np.matrix(linalg.inv(V))*np.matrix(D)*np.matrix(V)
>>> b
matrix([[ 15.52275377+0.j,   9.37603361+0.j,   0.79257097+0.j],
        [  9.37603361+0.j,  21.12538282+0.j, -10.23535271+0.j],
        [  0.79257097+0.j, -10.23535271+0.j,  10.35186341+0.j]])
>>> np.allclose(A, b)
False

但是

>>> f = np.matrix(V)*np.matrix(D)*np.matrix(linalg.inv(V))
>>> f
matrix([[  1.60000000e+01+0.j,  -9.00000000e+00+0.j,  -9.54791801e-15+0.j],
        [ -9.00000000e+00+0.j,   2.00000000e+01+0.j,  -1.10000000e+01+0.j],
        [ -1.55431223e-15+0.j,  -1.10000000e+01+0.j,   1.10000000e+01+0.j]])
>>> np.allclose(A, f)
True

顺便提一下,有一些方法可以使用np.dot,这样就不用把所有东西转换成矩阵,比如

>>> dotm = lambda *args: reduce(np.dot, args)
>>> dotm(V, D, inv(V))
array([[  1.60000000e+01+0.j,  -9.00000000e+00+0.j,  -9.54791801e-15+0.j],
       [ -9.00000000e+00+0.j,   2.00000000e+01+0.j,  -1.10000000e+01+0.j],
       [ -1.55431223e-15+0.j,  -1.10000000e+01+0.j,   1.10000000e+01+0.j]])

我觉得这样通常更简洁,不过你可能有不同的看法。

撰写回答