在matplotlib中自定义绘图线型
我想用 matplotlib
来画一个图,图上有一些点附近有空白的线条,像这个例子一样:
(来源: simplystatistics.org)
我知道有一个 set_dashes
的函数,但这个函数只能从起点开始设置周期性的虚线,不能控制虚线在终点的样子。
编辑:我找到了一种变通的方法,但结果出来的图只是一些普通的线条,并不是一个整体的对象。而且这个方法还用了另一个库 pandas
,奇怪的是,结果并不是我想要的——我希望每段线的间隔是一样的,但它们的间隔似乎和线的长度有关。
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
def my_plot(X,Y):
df = pd.DataFrame({
'x': X,
'y': Y,
})
roffset = 0.1
df['x_diff'] = df['x'].diff()
df['y_diff'] = df['y'].diff()
df['length'] = np.sqrt(df['x_diff']**2 + df['y_diff']**2)
aoffset = df['length'].mean()*roffset
# this is to drop values with negative magnitude
df['length_'] = df['length'][df['length']>2*aoffset]-2*aoffset
df['x_start'] = df['x'] -aoffset*(df['x_diff']/df['length'])
df['x_end'] = df['x']-df['x_diff']+aoffset*(df['x_diff']/df['length'])
df['y_start'] = df['y'] -aoffset*(df['y_diff']/df['length'])
df['y_end'] = df['y']-df['y_diff']+aoffset*(df['y_diff']/df['length'])
ax = plt.gca()
d = {}
idf = df.dropna().index
for i in idf:
line, = ax.plot(
[df['x_start'][i], df['x_end'][i]],
[df['y_start'][i], df['y_end'][i]],
linestyle='-', **d)
d['color'] = line.get_color()
ax.plot(df['x'], df['y'], marker='o', linestyle='', **d)
fig = plt.figure(figsize=(8,6))
axes = plt.subplot(111)
X = np.linspace(0,2*np.pi, 8)
Y = np.sin(X)
my_plot(X,Y)
plt.show()
2 个回答
4
你可以考虑在你的标记周围加一个厚厚的白色边框吗?这不是一种自定义的线条样式,而是一种简单的方法,可以达到类似的效果:
y = np.random.randint(1,9,15)
plt.plot(y,'o-', color='black', ms=10, mew=5, mec='white')
plt.ylim(0,10)
这里的关键是这些参数:
mec='white'
,标记的边缘颜色是白色ms=10
,标记的大小是10个点(这个比较大)mew=5
,标记的边缘宽度是5个点,所以实际上这些点的大小是10-5=5个点。
4
好的,我找到了一种还算满意的解决办法。虽然有点啰嗦,也有点小技巧,但它确实能工作!这个方法在每个点周围提供了一个固定的显示偏移,即使在进行缩放、平移等互动操作时,它也能保持这个偏移不变。
它的原理是为图表中的每条线创建一个自定义的 matplotlib.transforms.Transform
对象。虽然这个方法比较慢,但这种类型的图表通常不会用到成百上千个点,所以我觉得性能问题不是特别重要。
理想情况下,所有这些线段应该合并成一条“绘图线”,不过现在这样也还挺适合我的需求。
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
class MyTransform(mpl.transforms.Transform):
input_dims = 2
output_dims = 2
def __init__(self, base_point, base_transform, offset, *kargs, **kwargs):
self.base_point = base_point
self.base_transform = base_transform
self.offset = offset
super(mpl.transforms.Transform, self).__init__(*kargs, **kwargs)
def transform_non_affine(self, values):
new_base_point = self.base_transform.transform(self.base_point)
t = mpl.transforms.Affine2D().translate(-new_base_point[0], -new_base_point[1])
values = t.transform(values)
x = values[:, 0:1]
y = values[:, 1:2]
r = np.sqrt(x**2+y**2)
new_r = r-self.offset
new_r[new_r<0] = 0.0
new_x = new_r/r*x
new_y = new_r/r*y
return t.inverted().transform(np.concatenate((new_x, new_y), axis=1))
def my_plot(X,Y):
ax = plt.gca()
line, = ax.plot(X, Y, marker='o', linestyle='')
color = line.get_color()
size = X.size
for i in range(1,size):
mid_x = (X[i]+X[i-1])/2
mid_y = (Y[i]+Y[i-1])/2
# this transform takes data coords and returns display coords
t = ax.transData
# this transform takes display coords and
# returns them shifted by `offset' towards `base_point'
my_t = MyTransform(base_point=(mid_x, mid_y), base_transform=t, offset=10)
# resulting combination of transforms
t_end = t + my_t
line, = ax.plot(
[X[i-1], X[i]],
[Y[i-1], Y[i]],
linestyle='-', color=color)
line.set_transform(t_end)
fig = plt.figure(figsize=(8,6))
axes = plt.subplot(111)
X = np.linspace(0,2*np.pi, 8)
Y = np.sin(X)
my_plot(X,Y)
plt.show()