Scipy:稀疏矩阵支持高级索引吗?

11 投票
1 回答
14328 浏览
提问于 2025-04-17 13:28

没问题:

>>> t = np.array([[1,1,1,1,1],[2,2,2,2,2],[3,3,3,3,3],[4,4,4,4,4],[5,5,5,5,5]])
>>> x = np.arange(5).reshape((-1,1)); y = np.arange(5)
>>> print (t[[x]],t[[y]])

大问题:

>>> s = scipy.sparse.csr_matrix(t)
>>> print (s[[x]].toarray(),s[[y]].toarray())
Traceback (most recent call last):
  File "<pyshell#22>", line 1, in <module>
:               :
:               :
ValueError: data, indices, and indptr should be rank 1

s.toarray()[[x]] 这个方法很好用,但我用稀疏矩阵的初衷就是因为我的数组太大了,所以这样做反而失去了意义。我查看了一些稀疏矩阵的属性和方法,想找找有没有提到高级索引的,但没有找到。有什么想法吗?

1 个回答

22

稀疏矩阵的索引支持非常有限,能用的索引方式取决于矩阵的格式。

举个例子:

>>> a = scipy.sparse.rand(100,100,format='coo')
>>> a[2:5, 6:8]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'coo_matrix' object has no attribute '__getitem__'

但是

>>> a = scipy.sparse.rand(100,100,format='csc')
>>> a[2:5, 6:8]
<3x2 sparse matrix of type '<type 'numpy.float64'>'
    with 0 stored elements in Compressed Sparse Column format>

虽然

>>> a[2:5:2, 6:8:3]
Traceback (most recent call last):
...
ValueError: slicing with step != 1 not supported

还有

>>> a = scipy.sparse.rand(100,100,format='dok')
>>> a[2:5:2, 6:8:3]
Traceback (most recent call last):
...
NotImplementedError: fancy indexing supported over one axis only
>>> a[2:5:2,1]
<3x1 sparse matrix of type '<type 'numpy.float64'>'
    with 0 stored elements in Dictionary Of Keys format>

甚至

>>> a = scipy.sparse.rand(100,100,format='lil')
>>> a[2:5:2,1]
<2x1 sparse matrix of type '<type 'numpy.int32'>'
    with 0 stored elements in LInked List format>
C:\Python27\lib\site-packages\scipy\sparse\lil.py:230: SparseEfficiencyWarning: Indexing into a lil_matrix with multiple indices is slow. Pre-converting to CSC or CSR beforehand is more efficient.
  SparseEfficiencyWarning)
>>> a[2:5:2, 6:8:3]
<2x1 sparse matrix of type '<type 'numpy.int32'>'
    with 0 stored elements in LInked List format>

撰写回答