逐位生成数字的代码
我想做一个常量随机数生成器,也就是说这个生成器每次开始时输出的数字序列都是一样的,但这些数字不会重复。我已经有了一个生成圆周率(pi)的算法。现在我需要一个算法,可以一位一位地生成自然对数的底数(e),然后把这些数字输入到我的随机数生成器里。最好是用Python的迭代器或生成器来实现。如果有其他无理数的生成代码也欢迎分享。谢谢大家!
4 个回答
1
你是不是在找这样的东西:
>>> import math
>>> i = 1
>>> while i < 10:
... print('e = {0:.{1}f}'.format(math.e, i))
... i += 1
...
e = 2.7
e = 2.72
e = 2.718
e = 2.7183
e = 2.71828
e = 2.718282
e = 2.7182818
e = 2.71828183
e = 2.718281828
标准库里可以给你提供一个叫 math.e
的东西:这是一个数学常数 e,值大约是 2.718281...,具体精度可以根据需要调整。
5
如果你从 随机模块 调用 random.seed(n)
并且使用一个已知的 n
,那么每次得到的结果都会是一样的:
>>> import random
>>> random.seed(4) # chosen by fair dice roll
>>> random.randint(0, 9)
2
>>> random.randint(0, 9)
1
>>> random.randint(0, 9)
3
>>> random.randint(0, 9)
1
>>> random.seed(4) # same seed as above
>>> random.randint(0, 9)
2
>>> random.randint(0, 9)
1
>>> random.randint(0, 9)
3
>>> random.randint(0, 9)
1
如果你需要在不同的地方传递状态,可以使用 Random
类(这个类的文档有点少):
>>> r = random.Random(4)
>>> r.randint(0, 9)
2
>>> r.randint(0, 9)
1
这样很容易创建一个生成器,让你可以产生多个序列,而这些序列之间不会互相干扰:
def random_digits(seed):
r = random.Random(seed)
while True:
yield r.randint(0, 9)
11
没错!我用连分数的方法实现了这个!
我从这个链接找到了相关的代码:生成平方根2的数字
def z(contfrac, a=1, b=0, c=0, d=1):
for x in contfrac:
while a > 0 and b > 0 and c > 0 and d > 0:
t = a // c
t2 = b // d
if not t == t2:
break
yield t
a = (10 * (a - c*t))
b = (10 * (b - d*t))
# continue with same fraction, don't pull new x
a, b = x*a+b, a
c, d = x*c+d, c
for digit in rdigits(a, c):
yield digit
def rdigits(p, q):
while p > 0:
if p > q:
d = p // q
p = p - q * d
else:
d = (10 * p) // q
p = 10 * p - q * d
yield d
我自己写了一个连分数生成器:
def e_cf_expansion():
yield 1
k = 0
while True:
yield k
k += 2
yield 1
yield 1
然后把它们结合在一起:
def e_dec():
return z(e_cf_expansion())
接下来:
>>> gen = e_dec()
>>> e = [str(gen.next()) for i in xrange(1000)]
>>> e.insert(1, '.')
>>> print ''.join(e)
2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019011573834187930702154089149934884167509244761460668082264800168477411853742345442437107539077744992069551702761838606261331384583000752044933826560297606737113200709328709127443747047230696977209310141692836819025515108657463772111252389784425056953696770785449969967946864454905987931636889230098793127736178215424999229576351482208269895193668033182528869398496465105820939239829488793320362509443117301238197068416140397019837679320683282376464804295311802328782509819455815301756717361332069811250996181881593041690351598888519345807273866738589422879228499892086805825749279610484198444363463244968487560233624827041978623209002160990235304369941849146314093431738143640546253152096183690888707016768396424378140592714563549061303107208510383750510115747704171898610687396965521267154688957035035
附加内容:生成正整数n的平方根的连分数的代码,其中平方根是无理数:
def sqrt_cf_expansion(S):
"""Generalized generator to compute continued
fraction representation of sqrt(S)"""
m = 0
d = 1
a = int(math.sqrt(S))
a0 = a
while True:
yield a
m = d*a-m
d = (S-m**2)//d
a = (a0+m)//d