为什么这个Python 0MQ分布式计算脚本在固定输入大小时会挂起?

6 投票
1 回答
2284 浏览
提问于 2025-04-17 10:29

我最近开始学习0MQ。今天早些时候,我看到了一篇博客,标题是使用ZeroMQ的Python多进程。里面提到了我在0MQ指南中读到的通风口模式,所以我决定试试看。

我没有像原始代码那样仅仅计算数字的乘积,而是想尝试让通风口通过0MQ消息向工作者发送大数组。以下是我在进行“实验”时使用的代码。

正如下面评论中提到的,每当我尝试把string_length这个变量增加到超过3MB的数字时,代码就会卡住。

典型的症状是:假设我们把string_length设置为4MB(也就是4194304),那么结果管理器可能会从一个工作者那里得到结果,然后代码就暂停了。htop显示两个核心的使用率都不高。Etherape网络流量监控器也显示lo接口没有流量。

到目前为止,我花了几个小时寻找原因,但仍然没能搞清楚是什么导致了这个问题。如果能给我一点提示或者解决方案,我将非常感激。谢谢!

我在一台戴尔笔记本上运行Ubuntu 11.04 64位,配备Intel Core双核CPU,8GB内存,80GB Intel X25MG2 SSD,Python 2.7.1+,libzmq1 2.1.10-1chl1~natty1,python-pyzmq 2.1.10-1chl1~natty1。

import time
import zmq
from multiprocessing import Process, cpu_count

np = cpu_count() 
pool_size = np
number_of_elements = 128
# Odd, why once the slen is bumped to 3MB or above, the code hangs?
string_length = 1024 * 1024 * 3

def create_inputs(nelem, slen, pb=True):
    '''
    Generates an array that contains nelem fix-sized (of slen bytes)
    random strings and an accompanying array of hexdigests of the 
    former's elements.  Both are returned in a tuple.

    :type nelem: int
    :param nelem: The desired number of elements in the to be generated
                  array.
    :type slen: int
    :param slen: The desired number of bytes of each array element.
    :type pb: bool
    :param pb: If True, displays a text progress bar during input array
               generation.
    '''
    from os import urandom
    import sys
    import hashlib

    if pb:
        if nelem <= 64:
            toolbar_width = nelem
            chunk_size = 1
        else:
            toolbar_width = 64
            chunk_size = nelem // toolbar_width
        description = '%d random strings of %d bytes. ' % (nelem, slen) 
        s = ''.join(('Generating an array of ', description, '...\n'))
        sys.stdout.write(s)
        # create an ASCII progress bar
        sys.stdout.write("[%s]" % (" " * toolbar_width))
        sys.stdout.flush()
        sys.stdout.write("\b" * (toolbar_width+1)) 
    array   = list()
    hash4a  = list()
    try:
        for i in range(nelem):
            e = urandom(int(slen))
            array.append(e)
            h = hashlib.md5()
            h.update(e)
            he = h.hexdigest()
            hash4a.append(he)
            i += 1
            if pb and i and i % chunk_size == 0:
                sys.stdout.write("-")
                sys.stdout.flush()
        if pb:
            sys.stdout.write("\n")
    except MemoryError:
        print('Memory Error: discarding existing arrays')
        array  = list()
        hash4a = list()
    finally:
        return array, hash4a

# The "ventilator" function generates an array of nelem fix-sized (of slen
# bytes long) random strings, and sends the array down a zeromq "PUSH"
# connection to be processed by listening workers, in a round robin load
# balanced fashion.

def ventilator():
    # Initialize a zeromq context
    context = zmq.Context()

    # Set up a channel to send work
    ventilator_send = context.socket(zmq.PUSH)
    ventilator_send.bind("tcp://127.0.0.1:5557")

    # Give everything a second to spin up and connect
    time.sleep(1)

    # Create the input array
    nelem = number_of_elements
    slen = string_length
    payloads = create_inputs(nelem, slen)

    # Send an array to each worker
    for num in range(np):
        work_message = { 'num' : payloads }
        ventilator_send.send_pyobj(work_message)

    time.sleep(1)

# The "worker" functions listen on a zeromq PULL connection for "work"
# (array to be processed) from the ventilator, get the length of the array
# and send the results down another zeromq PUSH connection to the results
# manager.

def worker(wrk_num):
    # Initialize a zeromq context
    context = zmq.Context()

    # Set up a channel to receive work from the ventilator
    work_receiver = context.socket(zmq.PULL)
    work_receiver.connect("tcp://127.0.0.1:5557")

    # Set up a channel to send result of work to the results reporter
    results_sender = context.socket(zmq.PUSH)
    results_sender.connect("tcp://127.0.0.1:5558")

    # Set up a channel to receive control messages over
    control_receiver = context.socket(zmq.SUB)
    control_receiver.connect("tcp://127.0.0.1:5559")
    control_receiver.setsockopt(zmq.SUBSCRIBE, "")

    # Set up a poller to multiplex the work receiver and control receiver channels
    poller = zmq.Poller()
    poller.register(work_receiver, zmq.POLLIN)
    poller.register(control_receiver, zmq.POLLIN)

    # Loop and accept messages from both channels, acting accordingly
    while True:
        socks = dict(poller.poll())

        # If the message came from work_receiver channel, get the length
        # of the array and send the answer to the results reporter
        if socks.get(work_receiver) == zmq.POLLIN:
            #work_message = work_receiver.recv_json()
            work_message = work_receiver.recv_pyobj()
            length = len(work_message['num'][0])
            answer_message = { 'worker' : wrk_num, 'result' : length }
            results_sender.send_json(answer_message)

        # If the message came over the control channel, shut down the worker.
        if socks.get(control_receiver) == zmq.POLLIN:
            control_message = control_receiver.recv()
            if control_message == "FINISHED":
                print("Worker %i received FINSHED, quitting!" % wrk_num)
                break

# The "results_manager" function receives each result from multiple workers,
# and prints those results.  When all results have been received, it signals
# the worker processes to shut down.

def result_manager():
    # Initialize a zeromq context
    context = zmq.Context()

    # Set up a channel to receive results
    results_receiver = context.socket(zmq.PULL)
    results_receiver.bind("tcp://127.0.0.1:5558")

    # Set up a channel to send control commands
    control_sender = context.socket(zmq.PUB)
    control_sender.bind("tcp://127.0.0.1:5559")

    for task_nbr in range(np):
        result_message = results_receiver.recv_json()
        print "Worker %i answered: %i" % (result_message['worker'], result_message['result'])

    # Signal to all workers that we are finsihed
    control_sender.send("FINISHED")
    time.sleep(5)

if __name__ == "__main__":

    # Create a pool of workers to distribute work to
    for wrk_num in range(pool_size):
        Process(target=worker, args=(wrk_num,)).start()

    # Fire up our result manager...
    result_manager = Process(target=result_manager, args=())
    result_manager.start()

    # Start the ventilator!
    ventilator = Process(target=ventilator, args=())
    ventilator.start()

1 个回答

6

问题在于你的通风器(PUSH)插座在发送完之前就关闭了。你在通风器函数的最后加了一个1秒的暂停,这个时间不够发送384MB大小的信息。这就是你设定的阈值的原因,如果暂停时间更短,阈值就会更低。

不过,LINGER本来是用来防止这种情况发生的,所以我建议你向zeromq反馈一下:PUSH似乎没有遵循LINGER的设置。

针对你这个具体的例子(不增加一个不确定长度的暂停),可以使用相同的FINISH信号来结束你的通风器和工作者。这样,你就能确保通风器能持续工作,直到它完成需要的任务。

修改后的通风器:

def ventilator():
    # Initialize a zeromq context
    context = zmq.Context()

    # Set up a channel to send work
    ventilator_send = context.socket(zmq.PUSH)
    ventilator_send.bind("tcp://127.0.0.1:5557")

    # Set up a channel to receive control messages
    control_receiver = context.socket(zmq.SUB)
    control_receiver.connect("tcp://127.0.0.1:5559")
    control_receiver.setsockopt(zmq.SUBSCRIBE, "")

    # Give everything a second to spin up and connect
    time.sleep(1)

    # Create the input array
    nelem = number_of_elements
    slen = string_length
    payloads = create_inputs(nelem, slen)

    # Send an array to each worker
    for num in range(np):
        work_message = { 'num' : payloads }
        ventilator_send.send_pyobj(work_message)

    # Poll for FINISH message, so we don't shutdown too early
    poller = zmq.Poller()
    poller.register(control_receiver, zmq.POLLIN)

    while True:
        socks = dict(poller.poll())

        if socks.get(control_receiver) == zmq.POLLIN:
            control_message = control_receiver.recv()
            if control_message == "FINISHED":
                print("Ventilator received FINSHED, quitting!")
                break
            # else: unhandled message

撰写回答