如何快速对多个数据集进行最小二乘拟合?

11 投票
1 回答
10552 浏览
提问于 2025-04-17 09:49

我正在尝试对很多数据点进行高斯拟合。比如说,我有一个256 x 262144的数据数组,其中256个点需要拟合成高斯分布,而我需要做262144次这样的拟合。

有时候,高斯分布的峰值会超出数据范围,所以为了得到准确的平均结果,曲线拟合是最好的方法。即使峰值在范围内,曲线拟合也能提供更好的标准差,因为其他数据可能不在这个范围内。

我已经成功地对一个数据点进行了拟合,使用的是来自http://www.scipy.org/Cookbook/FittingData的代码。

我尝试重复这个算法,但看起来需要大约43分钟才能解决这个问题。有没有已经写好的更快的方法,可以并行处理或者更高效地完成这个任务呢?

from scipy import optimize                                                                                                                                          
from numpy import *                                                                                                                                                 
import numpy                                                                                                                                                        
# Fitting code taken from: http://www.scipy.org/Cookbook/FittingData                                                                                                

class Parameter:                                                                                                                                                    
    def __init__(self, value):                                                                                                                                  
            self.value = value                                                                                                                                  

    def set(self, value):                                                                                                                                       
            self.value = value                                                                                                                                  

    def __call__(self):                                                                                                                                         
            return self.value                                                                                                                                   


def fit(function, parameters, y, x = None):                                                                                                                         
    def f(params):                                                                                                                                              
            i = 0                                                                                                                                               
            for p in parameters:                                                                                                                                
                    p.set(params[i])                                                                                                                            
                    i += 1                                                                                                                                      
            return y - function(x)                                                                                                                              

    if x is None: x = arange(y.shape[0])                                                                                                                        
    p = [param() for param in parameters]                                                                                                                       
    optimize.leastsq(f, p)                                                                                                                                      


def nd_fit(function, parameters, y, x = None, axis=0):                                                                                                              
    """                                                                                                                                                         
    Tries to an n-dimensional array to the data as though each point is a new dataset valid across the appropriate axis.                                        
    """                                                                                                                                                         
    y = y.swapaxes(0, axis)                                                                                                                                     
    shape = y.shape                                                                                                                                             
    axis_of_interest_len = shape[0]                                                                                                                             
    prod = numpy.array(shape[1:]).prod()                                                                                                                        
    y = y.reshape(axis_of_interest_len, prod)                                                                                                                   

    params = numpy.zeros([len(parameters), prod])                                                                                                               

    for i in range(prod):                                                                                                                                       
            print "at %d of %d"%(i, prod)                                                                                                                       
            fit(function, parameters, y[:,i], x)                                                                                                                
            for p in range(len(parameters)):                                                                                                                    
                    params[p, i] = parameters[p]()                                                                                                              

    shape[0] = len(parameters)                                                                                                                                  
    params = params.reshape(shape)                                                                                                                              
    return params                                                                                                                                               

请注意,数据不一定是256x262144的,我在nd_fit中做了一些调整以使其工作。

我用来实现这个功能的代码是

from curve_fitting import *
import numpy
frames = numpy.load("data.npy")
y = frames[:,0,0,20,40]
x = range(0, 512, 2)
mu = Parameter(x[argmax(y)])
height = Parameter(max(y))
sigma = Parameter(50)
def f(x): return height()  * exp (-((x - mu()) / sigma()) ** 2)

ls_data = nd_fit(f, [mu, sigma, height], frames, x, 0)

注意:下面@JoeKington发布的解决方案非常好,解决得也很快。不过,似乎只有在高斯的显著区域在适当范围内时才有效。我还需要测试一下平均值是否仍然准确,因为这是我主要使用这个方法的目的。

高斯分布估计分析

1 个回答

18

最简单的方法就是把问题线性化。你现在使用的是一种非线性的迭代方法,这种方法比线性最小二乘法要慢。

基本上,你有:

y = height * exp(-(x - mu)^2 / (2 * sigma^2))

为了把这个变成线性方程,你需要对两边取自然对数:

ln(y) = ln(height) - (x - mu)^2 / (2 * sigma^2)

这样就简化成了一个多项式:

ln(y) = -x^2 / (2 * sigma^2) + x * mu / sigma^2 - mu^2 / sigma^2 + ln(height)

我们可以把它换成一个更简单的形式:

ln(y) = A * x^2 + B * x + C

其中:

A = 1 / (2 * sigma^2)
B = mu / (2 * sigma^2)
C = mu^2 / sigma^2 + ln(height)

不过,有一个问题。如果数据中有噪声,尤其是在分布的“尾部”,这个方法会变得不稳定。

因此,我们需要只使用接近分布“峰值”的数据。其实只包含超过某个阈值的数据进行拟合是很简单的。在这个例子中,我只包括那些大于给定高斯曲线最大观察值的20%的数据。

一旦我们这样做了,速度就会很快。解决262144个不同的高斯曲线只需要大约1分钟(如果你在这么大的数据上运行,记得去掉绘图部分的代码...)。如果你想的话,这个过程也很容易并行处理。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import itertools

def main():
    x, data = generate_data(256, 6)
    model = [invert(x, y) for y in data.T]
    sigma, mu, height = [np.array(item) for item in zip(*model)]
    prediction = gaussian(x, sigma, mu, height)

    plot(x, data, linestyle='none', marker='o')
    plot(x, prediction, linestyle='-')
    plt.show()

def invert(x, y):
    # Use only data within the "peak" (20% of the max value...)
    key_points = y > (0.2 * y.max())
    x = x[key_points]
    y = y[key_points]

    # Fit a 2nd order polynomial to the log of the observed values
    A, B, C = np.polyfit(x, np.log(y), 2)

    # Solve for the desired parameters...
    sigma = np.sqrt(-1 / (2.0 * A))
    mu = B * sigma**2
    height = np.exp(C + 0.5 * mu**2 / sigma**2)
    return sigma, mu, height

def generate_data(numpoints, numcurves):
    np.random.seed(3)
    x = np.linspace(0, 500, numpoints)

    height = 100 * np.random.random(numcurves)
    mu = 200 * np.random.random(numcurves) + 200
    sigma = 100 * np.random.random(numcurves) + 0.1
    data = gaussian(x, sigma, mu, height)

    noise = 5 * (np.random.random(data.shape) - 0.5)
    return x, data + noise

def gaussian(x, sigma, mu, height):
    data = -np.subtract.outer(x, mu)**2 / (2 * sigma**2)
    return height * np.exp(data)

def plot(x, ydata, ax=None, **kwargs):
    if ax is None:
        ax = plt.gca()
    colorcycle = itertools.cycle(mpl.rcParams['axes.color_cycle'])
    for y, color in zip(ydata.T, colorcycle):
        ax.plot(x, y, color=color, **kwargs)

main()

enter image description here

为了实现并行版本,我们只需要改变主函数。(我们还需要一个虚拟函数,因为multiprocessing.Pool.imap不能给它的函数提供额外的参数...)它看起来会像这样:

def parallel_main():
    import multiprocessing
    p = multiprocessing.Pool()
    x, data = generate_data(256, 262144)
    args = itertools.izip(itertools.repeat(x), data.T)
    model = p.imap(parallel_func, args, chunksize=500)
    sigma, mu, height = [np.array(item) for item in zip(*model)]
    prediction = gaussian(x, sigma, mu, height)

def parallel_func(args):
    return invert(*args)

编辑:如果简单的多项式拟合效果不好,可以尝试根据y值加权这个问题,正如@tslisten分享的链接/论文中提到的(斯特凡·范德瓦尔特实现了这个,不过我的实现有点不同)。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import itertools

def main():
    def run(x, data, func, threshold=0):
        model = [func(x, y, threshold=threshold) for y in data.T]
        sigma, mu, height = [np.array(item) for item in zip(*model)]
        prediction = gaussian(x, sigma, mu, height)

        plt.figure()
        plot(x, data, linestyle='none', marker='o', markersize=4)
        plot(x, prediction, linestyle='-', lw=2)

    x, data = generate_data(256, 6, noise=100)
    threshold = 50

    run(x, data, weighted_invert, threshold=threshold)
    plt.title('Weighted by Y-Value')

    run(x, data, invert, threshold=threshold)
    plt.title('Un-weighted Linear Inverse'

    plt.show()

def invert(x, y, threshold=0):
    mask = y > threshold
    x, y = x[mask], y[mask]

    # Fit a 2nd order polynomial to the log of the observed values
    A, B, C = np.polyfit(x, np.log(y), 2)

    # Solve for the desired parameters...
    sigma, mu, height = poly_to_gauss(A,B,C)
    return sigma, mu, height

def poly_to_gauss(A,B,C):
    sigma = np.sqrt(-1 / (2.0 * A))
    mu = B * sigma**2
    height = np.exp(C + 0.5 * mu**2 / sigma**2)
    return sigma, mu, height

def weighted_invert(x, y, weights=None, threshold=0):
    mask = y > threshold
    x,y = x[mask], y[mask]
    if weights is None:
        weights = y
    else:
        weights = weights[mask]

    d = np.log(y)
    G = np.ones((x.size, 3), dtype=np.float)
    G[:,0] = x**2
    G[:,1] = x

    model,_,_,_ = np.linalg.lstsq((G.T*weights**2).T, d*weights**2)
    return poly_to_gauss(*model)

def generate_data(numpoints, numcurves, noise=None):
    np.random.seed(3)
    x = np.linspace(0, 500, numpoints)

    height = 7000 * np.random.random(numcurves)
    mu = 1100 * np.random.random(numcurves) 
    sigma = 100 * np.random.random(numcurves) + 0.1
    data = gaussian(x, sigma, mu, height)

    if noise is None:
        noise = 0.1 * height.max()
    noise = noise * (np.random.random(data.shape) - 0.5)
    return x, data + noise

def gaussian(x, sigma, mu, height):
    data = -np.subtract.outer(x, mu)**2 / (2 * sigma**2)
    return height * np.exp(data)

def plot(x, ydata, ax=None, **kwargs):
    if ax is None:
        ax = plt.gca()
    colorcycle = itertools.cycle(mpl.rcParams['axes.color_cycle'])
    for y, color in zip(ydata.T, colorcycle):
        #kwargs['color'] = kwargs.get('color', color)
        ax.plot(x, y, color=color, **kwargs)

main()

enter image description here enter image description here

如果这仍然让你感到困扰,可以尝试迭代加权最小二乘法问题(这是@tslisten提到的链接中推荐的最终“最佳”方法)。不过要记住,这样会慢很多。

def iterative_weighted_invert(x, y, threshold=None, numiter=5):
    last_y = y
    for _ in range(numiter):
        model = weighted_invert(x, y, weights=last_y, threshold=threshold)
        last_y = gaussian(x, *model)
    return model

撰写回答