在Python中高效匹配多个正则表达式
词法分析器在有正则表达式的帮助下其实很容易写。今天我想用Python写一个简单的通用分析器,结果写出了:
import re
import sys
class Token(object):
""" A simple Token structure.
Contains the token type, value and position.
"""
def __init__(self, type, val, pos):
self.type = type
self.val = val
self.pos = pos
def __str__(self):
return '%s(%s) at %s' % (self.type, self.val, self.pos)
class LexerError(Exception):
""" Lexer error exception.
pos:
Position in the input line where the error occurred.
"""
def __init__(self, pos):
self.pos = pos
class Lexer(object):
""" A simple regex-based lexer/tokenizer.
See below for an example of usage.
"""
def __init__(self, rules, skip_whitespace=True):
""" Create a lexer.
rules:
A list of rules. Each rule is a `regex, type`
pair, where `regex` is the regular expression used
to recognize the token and `type` is the type
of the token to return when it's recognized.
skip_whitespace:
If True, whitespace (\s+) will be skipped and not
reported by the lexer. Otherwise, you have to
specify your rules for whitespace, or it will be
flagged as an error.
"""
self.rules = []
for regex, type in rules:
self.rules.append((re.compile(regex), type))
self.skip_whitespace = skip_whitespace
self.re_ws_skip = re.compile('\S')
def input(self, buf):
""" Initialize the lexer with a buffer as input.
"""
self.buf = buf
self.pos = 0
def token(self):
""" Return the next token (a Token object) found in the
input buffer. None is returned if the end of the
buffer was reached.
In case of a lexing error (the current chunk of the
buffer matches no rule), a LexerError is raised with
the position of the error.
"""
if self.pos >= len(self.buf):
return None
else:
if self.skip_whitespace:
m = self.re_ws_skip.search(self.buf[self.pos:])
if m:
self.pos += m.start()
else:
return None
for token_regex, token_type in self.rules:
m = token_regex.match(self.buf[self.pos:])
if m:
value = self.buf[self.pos + m.start():self.pos + m.end()]
tok = Token(token_type, value, self.pos)
self.pos += m.end()
return tok
# if we're here, no rule matched
raise LexerError(self.pos)
def tokens(self):
""" Returns an iterator to the tokens found in the buffer.
"""
while 1:
tok = self.token()
if tok is None: break
yield tok
if __name__ == '__main__':
rules = [
('\d+', 'NUMBER'),
('[a-zA-Z_]\w+', 'IDENTIFIER'),
('\+', 'PLUS'),
('\-', 'MINUS'),
('\*', 'MULTIPLY'),
('\/', 'DIVIDE'),
('\(', 'LP'),
('\)', 'RP'),
('=', 'EQUALS'),
]
lx = Lexer(rules, skip_whitespace=True)
lx.input('erw = _abc + 12*(R4-623902) ')
try:
for tok in lx.tokens():
print tok
except LexerError, err:
print 'LexerError at position', err.pos
这个代码运行得很好,但我有点担心它的效率不够高。有没有什么正则表达式的小技巧,可以让我写得更高效或者更优雅呢?
具体来说,有没有办法避免一个一个地检查所有的正则规则,来找到合适的那个?
6 个回答
7
我在Python的文档中找到了这个,它简单又优雅。
import collections
import re
Token = collections.namedtuple('Token', ['typ', 'value', 'line', 'column'])
def tokenize(s):
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [
('NUMBER', r'\d+(\.\d*)?'), # Integer or decimal number
('ASSIGN', r':='), # Assignment operator
('END', r';'), # Statement terminator
('ID', r'[A-Za-z]+'), # Identifiers
('OP', r'[+*\/\-]'), # Arithmetic operators
('NEWLINE', r'\n'), # Line endings
('SKIP', r'[ \t]'), # Skip over spaces and tabs
]
tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)
get_token = re.compile(tok_regex).match
line = 1
pos = line_start = 0
mo = get_token(s)
while mo is not None:
typ = mo.lastgroup
if typ == 'NEWLINE':
line_start = pos
line += 1
elif typ != 'SKIP':
val = mo.group(typ)
if typ == 'ID' and val in keywords:
typ = val
yield Token(typ, val, line, mo.start()-line_start)
pos = mo.end()
mo = get_token(s, pos)
if pos != len(s):
raise RuntimeError('Unexpected character %r on line %d' %(s[pos], line))
statements = '''
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;
'''
for token in tokenize(statements):
print(token)
这里的关键在于这一行:
tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)
这里的(?P<ID>PATTERN)
会用ID
指定的名字来标记匹配到的结果。
12
我建议使用 re.Scanner 类,虽然在标准库中没有详细说明,但它真的很值得使用。下面是一个例子:
import re
scanner = re.Scanner([
(r"-?[0-9]+\.[0-9]+([eE]-?[0-9]+)?", lambda scanner, token: float(token)),
(r"-?[0-9]+", lambda scanner, token: int(token)),
(r" +", lambda scanner, token: None),
])
>>> scanner.scan("0 -1 4.5 7.8e3")[0]
[0, -1, 4.5, 7800.0]
8
你可以把所有的正则表达式合并成一个,用“|”这个符号来分隔,让正则表达式库来帮你区分不同的部分。不过要注意一下,确保优先匹配的顺序是正确的,比如说要避免把一个关键词当成普通标识符来匹配。