高效从二进制文件创建Numpy数组的方法
我有一些非常大的数据集,这些数据存储在硬盘上的二进制文件里。下面是文件结构的一个例子:
文件头
149 Byte ASCII Header
记录开始
4 Byte Int - Record Timestamp
样本开始
2 Byte Int - Data Stream 1 Sample
2 Byte Int - Data Stream 2 Sample
2 Byte Int - Data Stream 3 Sample
2 Byte Int - Data Stream 4 Sample
样本结束
每个记录有122,880个样本,每个文件有713个记录。这样总共的大小是700,910,521字节。有时候样本率和记录的数量会有所不同,所以我需要编写代码来检测每个文件中的数量。
目前我用来将这些数据导入数组的代码是这样的:
from time import clock
from numpy import zeros , int16 , int32 , hstack , array , savez
from struct import unpack
from os.path import getsize
start_time = clock()
file_size = getsize(input_file)
with open(input_file,'rb') as openfile:
input_data = openfile.read()
header = input_data[:149]
record_size = int(header[23:31])
number_of_records = ( file_size - 149 ) / record_size
sample_rate = ( ( record_size - 4 ) / 4 ) / 2
time_series = zeros(0,dtype=int32)
t_series = zeros(0,dtype=int16)
x_series = zeros(0,dtype=int16)
y_series = zeros(0,dtype=int16)
z_series = zeros(0,dtype=int16)
for record in xrange(number_of_records):
time_stamp = array( unpack( '<l' , input_data[ 149 + (record * record_size) : 149 + (record * record_size) + 4 ] ) , dtype = int32 )
unpacked_record = unpack( '<' + str(sample_rate * 4) + 'h' , input_data[ 149 + (record * record_size) + 4 : 149 + ( (record + 1) * record_size ) ] )
record_t = zeros(sample_rate , dtype=int16)
record_x = zeros(sample_rate , dtype=int16)
record_y = zeros(sample_rate , dtype=int16)
record_z = zeros(sample_rate , dtype=int16)
for sample in xrange(sample_rate):
record_t[sample] = unpacked_record[ ( sample * 4 ) + 0 ]
record_x[sample] = unpacked_record[ ( sample * 4 ) + 1 ]
record_y[sample] = unpacked_record[ ( sample * 4 ) + 2 ]
record_z[sample] = unpacked_record[ ( sample * 4 ) + 3 ]
time_series = hstack ( ( time_series , time_stamp ) )
t_series = hstack ( ( t_series , record_t ) )
x_series = hstack ( ( x_series , record_x ) )
y_series = hstack ( ( y_series , record_y ) )
z_series = hstack ( ( z_series , record_z ) )
savez(output_file, t=t_series , x=x_series ,y=y_series, z=z_series, time=time_series)
end_time = clock()
print 'Total Time',end_time - start_time,'seconds'
这个过程目前大约需要250秒来处理一个700MB的文件,对我来说这个时间似乎太长了。有没有更高效的方法可以做到这一点呢?
最终解决方案
使用numpy的fromfile方法,并配合自定义的数据类型,使得运行时间缩短到了9秒,比上面的原始代码快了27倍。最终的代码如下。
from numpy import savez, dtype , fromfile
from os.path import getsize
from time import clock
start_time = clock()
file_size = getsize(input_file)
openfile = open(input_file,'rb')
header = openfile.read(149)
record_size = int(header[23:31])
number_of_records = ( file_size - 149 ) / record_size
sample_rate = ( ( record_size - 4 ) / 4 ) / 2
record_dtype = dtype( [ ( 'timestamp' , '<i4' ) , ( 'samples' , '<i2' , ( sample_rate , 4 ) ) ] )
data = fromfile(openfile , dtype = record_dtype , count = number_of_records )
time_series = data['timestamp']
t_series = data['samples'][:,:,0].ravel()
x_series = data['samples'][:,:,1].ravel()
y_series = data['samples'][:,:,2].ravel()
z_series = data['samples'][:,:,3].ravel()
savez(output_file, t=t_series , x=x_series ,y=y_series, z=z_series, fid=time_series)
end_time = clock()
print 'It took',end_time - start_time,'seconds'
4 个回答
一个明显的低效问题是,在循环中使用了 hstack
:
time_series = hstack ( ( time_series , time_stamp ) )
t_series = hstack ( ( t_series , record_t ) )
x_series = hstack ( ( x_series , record_x ) )
y_series = hstack ( ( y_series , record_y ) )
z_series = hstack ( ( z_series , record_z ) )
在每次循环中,这都会为每个系列分配一个稍微大一点的数组,并把到目前为止读取的所有数据复制到这个新数组里。这涉及到很多不必要的数据复制,可能还会导致内存碎片化的问题。
我会把 time_stamp
的值先放到一个列表里,最后再进行一次 hstack
,对 record_t
也是一样的做法。
如果这样做还没有明显提升性能,我会把循环里的内容注释掉,然后逐步把每一部分重新加回去,看看具体是在哪个地方花费了时间。
Numpy支持通过 numpy.memmap 将数据直接映射到类似数组的对象中。你可以通过内存映射文件,提取你需要的数据。
为了确保数据的字节顺序正确,只需对你读取的数据使用numpy.byteswap。你可以用一个条件表达式来检查你电脑的字节顺序:
if struct.pack('=f', np.pi) == struct.pack('>f', np.pi):
# Host is big-endian, in-place conversion
arrayName.byteswap(True)
一些提示:
不要使用struct模块。相反,使用Numpy的结构化数据类型和
fromfile
。可以查看这里了解更多信息:http://scipy-lectures.github.com/advanced/advanced_numpy/index.html#example-reading-wav-files你可以通过给
fromfile
传入合适的count=参数,一次性读取所有记录。
像这样(虽然没有测试过,但你能理解这个意思):
import numpy as np file = open(input_file, 'rb') header = file.read(149) # ... parse the header as you did ... record_dtype = np.dtype([ ('timestamp', '<i4'), ('samples', '<i2', (sample_rate, 4)) ]) data = np.fromfile(file, dtype=record_dtype, count=number_of_records) # NB: count can be omitted -- it just reads the whole file then time_series = data['timestamp'] t_series = data['samples'][:,:,0].ravel() x_series = data['samples'][:,:,1].ravel() y_series = data['samples'][:,:,2].ravel() z_series = data['samples'][:,:,3].ravel()