在Pandas中查找给定时间戳之前的最后一个值

4 投票
1 回答
68 浏览
提问于 2025-04-14 18:14

对于下面这个数据表,我想在每一行添加一列,用来记录在不同时间间隔下的ask_size,举个例子,比如说1毫秒。

比如说,对于第一行,1毫秒之前的大小应该是165,因为这是在1毫秒之前的ask_size - 尽管前面的时间戳(2024-02-12 09:00:00.178941829)早得多,但它仍然是**有效的** 1毫秒之前的大小。

再举个例子,第三行到第八行的ask_size都应该是203,因为在时间戳2024-02-12 09:00:00.334723166时的大小就是203,这个时间戳是第三行到第八行的最后一个1毫秒之前的时间。

我一直在研究merge_asof,尝试了一些方法,但都没有成功。希望能得到一些帮助!

表格示例

idx event_timestamp                 ask_size
0   2024-02-12 09:00:00.178941829   165
1   2024-02-12 09:00:00.334673928   166
2   2024-02-12 09:00:00.334723166   203
3   2024-02-12 09:00:00.339505589   203
4   2024-02-12 09:00:00.339517572   241
5   2024-02-12 09:00:00.339585194   276
6   2024-02-12 09:00:00.339597200   276
7   2024-02-12 09:00:00.339679756   277
8   2024-02-12 09:00:00.339705796   312
9   2024-02-12 09:00:00.343967540   275
10  2024-02-12 09:00:00.393306026   275

原始数据

data = {
    'event_timestamp': ['2024-02-12 09:00:00.178941829', '2024-02-12 09:00:00.334673928',
                        '2024-02-12 09:00:00.334723166', '2024-02-12 09:00:00.339505589',
                        '2024-02-12 09:00:00.339517572', '2024-02-12 09:00:00.339585194',
                        '2024-02-12 09:00:00.339597200', '2024-02-12 09:00:00.339679756',
                        '2024-02-12 09:00:00.339705796', '2024-02-12 09:00:00.343967540'],
    'ask_size_1_x': [165.0, 166.0, 203.0, 203.0, 241.0, 276.0, 276.0, 277.0, 312.0, 275.0]
}

df = pd.DataFrame(data)

尝试

data['1ms'] = data['event_timestamp'] - pd.Timedelta(milliseconds=1)

temp = data[['event_timestamp','ask_size_1']]
temp_time_shift = data[['1ms','ask_size_1']]



temp2 = pd.merge_asof(
            temp,
            temp_time_shift,
            left_on = 'event_timestamp',
            right_on = '1ms',
            direction='backward'
        )

编辑 建议:

import pandas as pd

data = {
    'event_timestamp': [
        '2024-02-12 09:00:00.393306026',
        '2024-02-12 09:00:00.393347792',
        '2024-02-12 09:00:00.393351971',
        '2024-02-12 09:00:00.393355738',
        '2024-02-12 09:00:00.393389724',
        '2024-02-12 09:00:00.542780521',
        '2024-02-12 09:00:00.542841917',
        '2024-02-12 09:00:00.714845055',
        '2024-02-12 09:00:00.714908862',
        '2024-02-12 09:00:00.747016524'
    ],
    'ask_size_1': [275.0, 275.0, 237.0, 237.0, 202.0, 202.0, 202.0, 262.0, 261.0, 263.0]
}

df = pd.DataFrame(data)
df['event_timestamp'] = pd.to_datetime(df['event_timestamp'])  # Convert 'event_timestamp' to datetime format

tolerance = pd.Timedelta('1ms')
df['out'] = pd.merge_asof(df['event_timestamp'].sub(tolerance),
                          df[['event_timestamp', 'ask_size_1']],
                          direction='forward', tolerance=tolerance
                         )['ask_size_1']

下面是输出结果,你可以看到第七行的ask_size和输出值是一样的。输出值应该是第七行之前至少1毫秒的最后一个ask_size,也就是第六行的值202。

从这个角度看,黄色的部分技术上可以是NaN,因为在1毫秒之前没有值。

    event_timestamp             ask_size_1  out
0   2024-02-12 09:00:00.393306026   275.0   275.0
1   2024-02-12 09:00:00.393347792   275.0   275.0
2   2024-02-12 09:00:00.393351971   237.0   275.0
3   2024-02-12 09:00:00.393355738   237.0   275.0
4   2024-02-12 09:00:00.393389724   202.0   275.0
5   2024-02-12 09:00:00.542780521   202.0   202.0
6   2024-02-12 09:00:00.542841917   202.0   202.0
7   2024-02-12 09:00:00.714845055   262.0   262.0
8   2024-02-12 09:00:00.714908862   261.0   262.0
9   2024-02-12 09:00:00.747016524   263.0   263.0

预期输出: Image

1 个回答

1

如果我理解得没错,你确实可以使用一个叫做 merge_asof 的功能。不过,你需要调整一些参数,以确保搜索的顺序是正确的。

delta = pd.Timedelta('1ms')
df['out'] = pd.merge_asof(df['event_timestamp'].sub(delta), df,
                          direction='backward')['ask_size_1']

注意:我假设时间戳已经排好序了。如果没有,你需要在运行 merge_asof 之前先把它们排序。

输出结果:

                event_timestamp  ask_size_1    out
0 2024-02-12 09:00:00.393306026       271.0    NaN
1 2024-02-12 09:00:00.393347792       275.0    NaN
2 2024-02-12 09:00:00.393351971       237.0    NaN
3 2024-02-12 09:00:00.393355738       237.0    NaN
4 2024-02-12 09:00:00.393389724       202.0    NaN
5 2024-02-12 09:00:00.542780521       206.0  202.0
6 2024-02-12 09:00:00.542841917        51.0  202.0
7 2024-02-12 09:00:00.714845055       262.0   51.0
8 2024-02-12 09:00:00.714908862       261.0   51.0
9 2024-02-12 09:00:00.747016524       263.0  261.0

如果你想要得到黄色值对应的 271,你可以稍微调整一下:

tmp = pd.concat([pd.DataFrame({'event_timestamp': [df['event_timestamp'].iloc[0]-delta],
                               'ask_size_1': [df['ask_size_1'].iloc[0]]}),
                 df])

delta = pd.Timedelta('1ms')

df['out'] = pd.merge_asof(df['event_timestamp'].sub(delta), tmp,
                          direction='backward',
                          allow_exact_matches=False)['ask_size_1']

输出结果:

                event_timestamp  ask_size_1    out
0 2024-02-12 09:00:00.393306026       271.0    NaN
1 2024-02-12 09:00:00.393347792       275.0  271.0
2 2024-02-12 09:00:00.393351971       237.0  271.0
3 2024-02-12 09:00:00.393355738       237.0  271.0
4 2024-02-12 09:00:00.393389724       202.0  271.0
5 2024-02-12 09:00:00.542780521       206.0  202.0
6 2024-02-12 09:00:00.542841917        51.0  202.0
7 2024-02-12 09:00:00.714845055       262.0   51.0
8 2024-02-12 09:00:00.714908862       261.0   51.0
9 2024-02-12 09:00:00.747016524       263.0  261.0

撰写回答