Python中的并行递归函数
我该如何在Python中实现递归函数的并行处理呢?
我的函数是这样的:
def f(x, depth):
if x==0:
return ...
else :
return [x] + map(lambda x:f(x, depth-1), list_of_values(x))
def list_of_values(x):
# Heavy compute, pure function
当我尝试用 multiprocessing.Pool.map
来进行并行处理时,Windows会打开无数个进程,导致程序卡住。
有没有什么好的(最好是简单的)方法可以在单台多核机器上实现并行处理呢?
以下是导致程序卡住的代码:
from multiprocessing import Pool
pool = pool(processes=4)
def f(x, depth):
if x==0:
return ...
else :
return [x] + pool.map(lambda x:f(x, depth-1), list_of_values(x))
def list_of_values(x):
# Heavy compute, pure function
3 个回答
我一开始会保存主进程的ID,然后把它传递给子程序。
当我需要启动一个多进程的工作时,我会先检查主进程的子进程数量。如果子进程的数量小于或等于我电脑CPU核心数量的一半,我就会让它们并行运行。如果子进程的数量大于CPU核心数量的一半,我就会让它们顺序运行。这样做可以避免瓶颈,并有效利用CPU核心。你可以根据自己的情况调整核心数量。例如,你可以设置为CPU核心的确切数量,但不要超过这个数量。
def subProgramhWrapper(func, args):
func(*args)
parent = psutil.Process(main_process_id)
children = parent.children(recursive=True)
num_cores = int(multiprocessing.cpu_count()/2)
if num_cores >= len(children):
#parallel run
pool = MyPool(num_cores)
results = pool.starmap(subProgram, input_params)
pool.close()
pool.join()
else:
#serial run
for input_param in input_params:
subProgramhWrapper(subProgram, input_param)
经过一番思考,我找到了一个简单的答案,虽然不算完整,但已经足够好了:
# A partially parallel solution. Just do the first level of recursion in parallel. It might be enough work to fill all cores.
import multiprocessing
def f_helper(data):
return f(x=data['x'],depth=data['depth'], recursion_depth=data['recursion_depth'])
def f(x, depth, recursion_depth):
if depth==0:
return ...
else :
if recursion_depth == 0:
pool = multiprocessing.Pool(processes=4)
result = [x] + pool.map(f_helper, [{'x':_x, 'depth':depth-1, 'recursion_depth':recursion_depth+1 } _x in list_of_values(x)])
pool.close()
else:
result = [x] + map(f_helper, [{'x':_x, 'depth':depth-1, 'recursion_depth':recursion_depth+1 } _x in list_of_values(x)])
return result
def list_of_values(x):
# Heavy compute, pure function
好的,抱歉给你带来了麻烦。
我将回答一个稍微不同的问题,假设f()
这个函数返回列表中所有值的总和。这样做是因为从你的例子中,我不太清楚f()
的返回类型是什么,而用整数来做会让代码更容易理解。
这个问题比较复杂,因为有两个不同的事情同时在进行:
- 在池中计算耗时的函数
- 递归地展开
f()
我非常小心,只使用池来计算耗时的函数。这样我们就不会出现“进程爆炸”的情况,但由于这是异步的,我们需要将很多工作推迟到回调中,也就是当工作完成后,工人会调用这个回调。
更重要的是,我们需要使用一个倒计时锁,以便知道所有对f()
的单独调用何时完成。
可能有更简单的方法(我很确定有,但我还有其他事情要做),不过也许这能给你一个关于可能性的想法:
from multiprocessing import Pool, Value, RawArray, RLock
from time import sleep
class Latch:
'''A countdown latch that lets us wait for a job of "n" parts'''
def __init__(self, n):
self.__counter = Value('i', n)
self.__lock = RLock()
def decrement(self):
with self.__lock:
self.__counter.value -= 1
print('dec', self.read())
return self.read() == 0
def read(self):
with self.__lock:
return self.__counter.value
def join(self):
while self.read():
sleep(1)
def list_of_values(x):
'''An expensive function'''
print(x, ': thinking...')
sleep(1)
print(x, ': thought')
return list(range(x))
pool = Pool()
def async_f(x, on_complete=None):
'''Return the sum of the values in the expensive list'''
if x == 0:
on_complete(0) # no list, return 0
else:
n = x # need to know size of result beforehand
latch = Latch(n) # wait for n entires to be calculated
result = RawArray('i', n+1) # where we will assemble the map
def delayed_map(values):
'''This is the callback for the pool async process - it runs
in a separate thread within this process once the
expensive list has been calculated and orchestrates the
mapping of f over the result.'''
result[0] = x # first value in list is x
for (v, i) in enumerate(values):
def callback(fx, i=i):
'''This is the callback passed to f() and is called when
the function completes. If it is the last of all the
calls in the map then it calls on_complete() (ie another
instance of this function) for the calling f().'''
result[i+1] = fx
if latch.decrement(): # have completed list
# at this point result contains [x]+map(f, ...)
on_complete(sum(result)) # so return sum
async_f(v, callback)
# Ask worker to generate list then call delayed_map
pool.apply_async(list_of_values, [x], callback=delayed_map)
def run():
'''Tie into the same mechanism as above, for the final value.'''
result = Value('i')
latch = Latch(1)
def final_callback(value):
result.value = value
latch.decrement()
async_f(6, final_callback)
latch.join() # wait for everything to complete
return result.value
print(run())
顺便说一下,我使用的是Python 3.2,上面的代码看起来有点复杂,因为我们在稍后才计算最终结果(向上回溯)。可能像生成器或未来对象这样的东西可以简化这个过程。
另外,我怀疑你需要一个缓存,以避免在用相同参数调用耗时函数时不必要地重新计算。
还可以看看 yaniv的回答 - 这似乎是通过明确深度来改变评估顺序的另一种方法。