带内存的迭代器?
我正在开发一个使用马尔可夫链的应用程序。
下面是这段代码的一个例子:
chain = MarkovChain(order=1)
train_seq = ["","hello","this","is","a","beautiful","world"]
for i, word in enum(train_seq):
chain.train(previous_state=train_seq[i-1],next_state=word)
我想要做的是遍历 train_seq,但要保留最后的 N 个元素。
for states in unknown(train_seq,order=1):
# states should be a list of states, with states[-1] the newest word,
# and states[:-1] should be the previous occurrences of the iteration.
chain.train(*states)
希望我对问题的描述足够清楚。
3 个回答
0
对yan的回答进行改进,以避免复制:
from itertools import *
def staggered_iterators(sequence, count):
iterator = iter(sequence)
for i in xrange(count):
result, iterator = tee(iterator)
yield result
next(iterator)
tuple_size = 4
for w in izip(*(i for i in takewhile(staggered_iterators(seq, order)))):
print w
1
seq = [1,2,3,4,5,6,7]
for w in zip(seq, seq[1:]):
print w
你还可以通过以下方法来创建任意大小的配对:
tuple_size = 2
for w in zip(*(seq[i:] for i in range(tuple_size)))
print w
补充说明:不过使用迭代的zip方法可能更好:
from itertools import izip
tuple_size = 4
for w in izip(*(seq[i:] for i in range(tuple_size)))
print w
我在我的系统上试过这个,序列有10,000,000个整数,结果非常快。
6
window
可以一次从 iterable
中获取 n
个项目。
from collections import deque
def window(iterable, n=3):
it = iter(iterable)
d = deque(maxlen = n)
for elem in it:
d.append(elem)
yield tuple(d)
print [x for x in window([1, 2, 3, 4, 5])]
# [(1,), (1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5)]
如果你希望在开始的几次中也能得到相同数量的项目,
from collections import deque
from itertools import islice
def window(iterable, n=3):
it = iter(iterable)
d = deque((next(it) for Null in range(n-1)), n)
for elem in it:
d.append(elem)
yield tuple(d)
print [x for x in window([1, 2, 3, 4, 5])]
这样做就可以了。