AttributeError: 'ortools.algorithms.python.knapsack_solver.KnapsackSolver'没有属性'KNAPSACK_DYNAMIC_PROGRAMMING_SOLVER

0 投票
1 回答
64 浏览
提问于 2025-04-14 17:41

我正在尝试使用ortools包里的knapsack算法,但遇到了一些问题。这里是我用来测试这个算法的脚本,我会把完整的脚本都给你。根据我在GitHub上找到的信息,大部分的包使用方法都是基于之前的版本,我找不到合适的、能正常工作的用法。

# A Dynamic Programming based Python Program for 0-1 Knapsack problem
# Returns the maximum value that can be put in a knapsack of capacity W
import numpy as np
from ortools.algorithms.python import knapsack_solver


def knapsack(W, wt, val, n):
    K = [[0 for x in range(W+1)] for x in range(n+1)]

    # Build table K[][] in bottom up manner
    for i in range(n+1):
        for w in range(W+1):
            if i==0 or w==0:
                K[i][w] = 0
            elif wt[i-1] <= w:
                K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]],  K[i-1][w])
            else:
                K[i][w] = K[i-1][w]


    best = K[n][W]

    amount = np.zeros(n)
    a = best
    j = n
    Y = W

    # j = j + 1;
    #
    # amount(j) = 1;
    # Y = Y - weights(j);
    # j = j - 1;
    # a = A(j + 1, Y + 1);

    while a > 0:
       while K[j][Y] == a:
           j = j - 1

       j = j + 1
       amount[j-1] = 1
       Y = Y - wt[j-1]
       j = j - 1
       a = K[j][Y]

    return amount


def test_knapsack():
    weights = [1 ,1 ,1, 1 ,2 ,2 ,3]
    values  = [1 ,1 ,2 ,3, 1, 3 ,5]
    best = 13
    print(knapsack(7, weights, values, 7))

#===========================================
'''
------------------------------------------------
Use dynamic programming (DP) to solve 0/1 knapsack problem
Time complexity: O(nW), where n is number of items and W is capacity

Author: Kaiyang Zhou
Website: https://kaiyangzhou.github.io/
------------------------------------------------
knapsack_dp(values,weights,n_items,capacity,return_all=False)

Input arguments:
  1. values: a list of numbers in either int or float, specifying the values of items
  2. weights: a list of int numbers specifying weights of items
  3. n_items: an int number indicating number of items
  4. capacity: an int number indicating the knapsack capacity
  5. return_all: whether return all info, defaulty is False (optional)

Return:
  1. picks: a list of numbers storing the positions of selected items
  2. max_val: maximum value (optional)
------------------------------------------------
'''
def knapsack_dp(values,weights,n_items,capacity,return_all=False):
    check_inputs(values,weights,n_items,capacity)

    table = np.zeros((n_items+1,capacity+1),dtype=np.float32)
    keep = np.zeros((n_items+1,capacity+1),dtype=np.float32)

    for i in range(1,n_items+1):
        for w in range(0,capacity+1):
            wi = weights[i-1] # weight of current item
            vi = values[i-1] # value of current item
            if (wi <= w) and (vi + table[i-1,w-wi] > table[i-1,w]):
                table[i,w] = vi + table[i-1,w-wi]
                keep[i,w] = 1
            else:
                table[i,w] = table[i-1,w]

    picks = []
    K = capacity

    for i in range(n_items,0,-1):
        if keep[i,K] == 1:
            picks.append(i)
            K -= weights[i-1]

    picks.sort()
    picks = [x-1 for x in picks] # change to 0-index

    if return_all:
        max_val = table[n_items,capacity]
        return picks,max_val
    return picks

def check_inputs(values,weights,n_items,capacity):
    # check variable type
    assert(isinstance(values,list))
    assert(isinstance(weights,list))
    assert(isinstance(n_items,int))
    assert(isinstance(capacity,int))
    # check value type
    assert(all(isinstance(val,int) or isinstance(val,float) for val in values))
    assert(all(isinstance(val,int) for val in weights))
    # check validity of value
    assert(all(val >= 0 for val in weights))
    assert(n_items > 0)
    assert(capacity > 0)

def test_knapsack_dp():
    values = [2,3,4]
    weights = [1,2,3]
    n_items = 3
    capacity = 3
    picks = knapsack_dp(values,weights,n_items,capacity)
    print (picks)



osolver = knapsack_solver.KnapsackSolver(
    # knapsack_solver.KnapsackSolver.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    knapsack_solver.KnapsackSolver.KNAPSACK_DYNAMIC_PROGRAMMING_SOLVER,
    'test')

def knapsack_ortools(values, weights, items, capacity ):
    scale = 1000
    values = np.array(values)
    weights = np.array(weights)
    values = (values * scale).astype(np.int)
    weights = (weights).astype(np.int)
    capacity = capacity

    osolver.Init(values.tolist(), [weights.tolist()], [capacity])
    computed_value = osolver.Solve()
    packed_items = [x for x in range(0, len(weights))
                    if osolver.BestSolutionContains(x)]

    return packed_items


if __name__ == "__main__":
    test_knapsack_dp()
    test_knapsack()

这是我遇到的详细错误信息

  File "knapsack.py", line 135, in <module>
    knapsack_solver.KnapsackSolver.KNAPSACK_DYNAMIC_PROGRAMMING_SOLVER,
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: type object 'ortools.algorithms.python.knapsack_solver.KnapsackSolver' has no attribute 'KNAPSACK_DYNAMIC_PROGRAMMING_SOLVER'

我使用的环境是:
Python 3.12.2
ortools 9.8.3296
numpy 1.26.4

1 个回答

2

当我们从swig切换到pybind11时,我们需要引入类枚举。

    knapsack_solver.SolverType.KNAPSACK_DYNAMIC_PROGRAMMING_SOLVER

请查看 这个链接

撰写回答