如何修复简单遗传算法中的早熟收敛?

9 投票
1 回答
1274 浏览
提问于 2025-04-16 20:29

昨天我开始研究遗传算法,学了一些基本理论后,我尝试用Python写一个简单的遗传算法,来解决丢番图方程。我对Python和遗传算法都很陌生,所以请不要对我的代码过于苛刻。

问题

我没有得到任何结果,因为出现了过早收敛的问题(有一个无法返回的点,population[n] == population[n+i],其中i是任何整数。即使是随机变异的元素也无法改变这一点,种群的质量下降得非常快)。

遗传算法使用交叉来繁殖,并且采用加权选择父母。

  • 问题1:我的代码(见下文)中有没有设计上的错误?
  • 问题1.2:我需要加入精英策略吗?
  • 问题1.3:我需要改变繁殖逻辑吗?
  • 问题2:真的需要深拷贝吗?

代码:

# -*- coding: utf-8 -*-
from random import randint
from copy import deepcopy
from math import floor
import random

class Organism:
    #initiate
    def __init__(self, alleles, fitness, likelihood):
        self.alleles = alleles
        self.fitness = fitness
        self.likelihood = likelihood
        self.result = 0
    def __unicode__(self):
        return '%s [%s - %s]' % (self.alleles, self.fitness, self.likelihood)

class  CDiophantine:
    def __init__(self, coefficients,  result):
        self.coefficients = coefficients
        self.result = result

    maxPopulation = 40
    organisms = []
    def GetGene (self,i):
        return self.organisms[i]

    def OrganismFitness (self,gene):
        gene.result = 0
        for i in range (0, len(self.coefficients)):
            gene.result += self.coefficients[i]*gene.alleles[i]
        gene.fitness = abs(gene.result - self.result)
        return gene.fitness

    def Fitness (self):
        for organism in self.organisms:
            organism.fitness = self.OrganismFitness(organism)
            if organism.fitness == 0:
                return  organism
        return None


    def MultiplyFitness (self):
        coefficientSum = 0
        for organism in self.organisms:
            coefficientSum += 1/float(organism.fitness)
        return coefficientSum

    def GenerateLikelihoods (self):
        last = 0
        multiplyFitness = self.MultiplyFitness()
        for organism in self.organisms:
            last = ((1/float(organism.fitness)/multiplyFitness)*100)
            #print '1/%s/%s*100 - %s' % (organism.fitness, multiplyFitness, last)
            organism.likelihood = last

    def Breed (self, parentOne, parentTwo):
        crossover = randint (1,len(self.coefficients)-1)
        child = deepcopy(parentOne)
        initial = 0
        final = len(parentOne.alleles) - 1
        if randint (1,100) < 50:
            father = parentOne
            mother = parentTwo
        else:
            father = parentTwo
            mother = parentOne
        child.alleles = mother.alleles[:crossover] + father.alleles[crossover:]
        if randint (1,100) < 5:
            for i in range(initial,final):    
                child.alleles[i] = randint (0,self.result)

        return child

    def CreateNewOrganisms (self):
        #generating new population
        tempPopulation = []
        for _ in self.organisms:
            iterations = 0
            father = deepcopy(self.organisms[0])
            mother = deepcopy(self.organisms[1])
            while father.alleles == mother.alleles:
                father = self.WeightedChoice()
                mother = self.WeightedChoice()
                iterations+=1
                if iterations > 35:
                    break
            kid = self.Breed(father,mother)
            tempPopulation.append(kid)
        self.organisms = tempPopulation

    def WeightedChoice (self):
        list = []
        for organism in self.organisms:
            list.append((organism.likelihood,organism))
        list = sorted((random.random() * x[0], x[1]) for x in list)
        return list[-1][1]


    def AverageFitness (self):
        sum = 0
        for organism in self.organisms:
            sum += organism.fitness
        return float(sum)/len(self.organisms)

    def AverageLikelihoods (self):
        sum = 0
        for organism in self.organisms:
            sum += organism.likelihood
        return sum/len(self.organisms)

    def Solve (self):
        solution = None
        for i in range(0,self.maxPopulation):
            alleles = []
            #
            for j in range(0, len(self.coefficients)):
                alleles.append(randint(0, self.result))
            self.organisms.append(Organism(alleles,0,0))
        solution = self.Fitness()
        if solution:
            return solution.alleles
        iterations = 0
        while not solution and  iterations <3000:
            self.GenerateLikelihoods()
            self.CreateNewOrganisms()
            solution = self.Fitness()
            if solution:
                print 'SOLUTION FOUND IN %s ITERATIONS' % iterations
                return solution.alleles
            iterations += 1
        return  -1

if __name__ == "__main__":
    diophantine = CDiophantine ([1,2,3,4],30)
    #cProfile.run('diophantine.Solve()')
    print diophantine.Solve()

尝试改变繁殖和加权随机选择的逻辑,但没有得到任何结果。这个遗传算法应该是有效的,我不知道哪里出了问题。我知道Python上有一些遗传算法的库,我现在正在尝试理解它们——对我来说似乎有点复杂。抱歉我的错误,英语不是我的母语。感谢你的理解。

更新:将染色体存储为格雷码,而不是整数。

1 个回答

3

有一点小逻辑错误:parentTwo当父亲的可能性稍微高于当母亲的可能性。公平的概率应该是用randint (1,100) <= 50,而不是randint (1,100) < 50。这并不是导致你问题的原因。

  1. 你的人口数量相对较小。40这个数字对于大多数问题来说是非常少的。这会导致它很快收敛。
  2. 精英策略会让你的人口更快收敛,而不是更慢。
  3. 你的WeightedChoice函数看起来效率不高,如果我理解得没错的话。我最近没有用Python,所以不太清楚里面的具体情况,但看起来确实有点低效。如果你能改进这个部分,处理速度会加快,这样你就可以增加人口数量(而且,考虑到你的算法可能至少是O(n^2),这会非常重要)。

由于人口数量这么小,200到300代就解决问题并不奇怪。如果你增加人口数量,所需的代数应该会减少。

注意:我找到了一些几年前写的旧代码,用于解决类似的问题。它是用C语言写的,使用了锦标赛选择,也许能给你一些灵感:

/*Diophantine equation solving genetic algorithm
Copyright (C) 2009- by Joel Rein
Licensed under the terms of the MIT License*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define POP 100
//number of variables to solve for
#define VAR 4
//maximum value for a) result and b) variables
#define MAX 100 
#define MAX_GENS 500
//probability of crossover (otherwise just one parent will be used)
#define CROSSOVER 0.7
//probability of mutation (per gene)
#define MUTATION 0.4
//print out debug information each generation (recommended: if used, keep RUNS low)
#define DEBUG
//print result of each run individually
#define PRINT_RESULT
//how many times to run the GA
#define RUNS 1

int pop[POP][VAR], scores[POP], new[POP][VAR];
int coefficients[VAR];
int result=0;

int score(int index){
    int sum=0;
    for(int i=0;i<VAR;i++)
        sum+=coefficients[i]*pop[index][i];
    return abs(sum-result);
}

int tournament(int size){
    int best=rand()%POP;
    for(int i=1;i<size;i++){
        int comp=rand()%POP;
        if(scores[comp]<scores[best])
            best=comp;
    }
    return best;
}

void breed(int target){
    int a=tournament(3), b=tournament(3);
    //copy a
    for(int i=0;i<VAR;i++)
        new[target][i]=pop[a][i];
    //crossover
    if((float)rand()/RAND_MAX<CROSSOVER){
        int x=rand()%VAR;
        for(int i=x;i<VAR;i++)
            new[target][i]=pop[b][i];
    }
    //mutation
    for(int i=0;i<VAR;i++)
        if((float)rand()/RAND_MAX<MUTATION)
            new[target][i]=rand()%(result*2)-result;
}

void debug(int gen, int best){
#ifdef DEBUG
    printf("Gen: %3i Score: %3i --- ", gen, scores[best]);
    int sum=0;
    for(int i=0;i<VAR;i++){
        sum+=coefficients[i]*pop[best][i];
        printf("%3i*%3i+", coefficients[i], pop[best][i]);
    }
    printf("0= %3i (target: %i)\n", sum, result);
#endif
}

int ga(int run){
    srand(time(NULL)+run);
    //calculate a result for the equation. 
    //this mustn't be 0, else we get division-by-zero errors while initialising & mutating.
    while(!result)
        result=rand()%MAX;
    for(int i=0;i<VAR;i++)
        coefficients[i]=rand()%result;
    //initialise population
    for(int i=0;i<POP;i++)
        for(int j=0;j<VAR;j++)
            pop[i][j]=rand()%(result*2)-result;
    //main loop
    int gen, best;
    for(gen=0;gen<MAX_GENS;gen++){
        best=0;
        //evaluate population
        for(int i=0;i<POP;i++){
            scores[i]=score(i);
            if(scores[i]<scores[best])
                best=i;
        }
        debug(gen, best);
        if(scores[best]==0)
            break;
        //breed and replace
        for(int i=0;i<POP;i++)
            breed(i);
        for(int i=0;i<POP;i++)
            for(int j=0;j<VAR;j++)
                pop[i][j]=new[i][j];
    }
#ifdef PRINT_RESULT
    printf("Terminated after %4i generations with a score of %3i\n", gen, scores[best]); 
#else
    printf(".");
#endif
    return gen;
}

int main(){
    int total=0;
    for(int i=0;i<RUNS;i++)
        total+=ga(i);
    printf("\nAverage runtime: %i generations\n", total/RUNS);
}

撰写回答