如何编写大量的for循环

2 投票
5 回答
2043 浏览
提问于 2025-04-16 18:58

我刚开始学习编程,所以如果我问的问题不太对,请见谅。

我有以下这段代码:

int sum = 100;
int a1 = 20;
int a2 = 5;
int a3 = 10;
for (int i = 0; i * a1 <= sum; i++) {
    for (int j = 0; i * a1 + j * a2 <= sum; j++) {
        for (int k = 0; i * a1 + j * a2 + k * a3 <= sum; k++) {
            if (i * a1 + j * a2 + k * a3 == sum) {
                System.out.println(i + "," + j + "," + k);
            }
        }
    }   
}

这段代码的主要功能是告诉我不同的组合,能够加起来等于上面的总和(在这个例子中是100)。这个功能运行得很好,但我现在想把它应用到一个更大的数据集上,我不太确定该怎么做,因为我不想手动编写循环,也不知道我会有多少个变量(可能从10个到6000个都有)。我基本上有一个SQL查询,可以从一个数组中加载这些数据。

有没有办法在Java或者Python中(我正在学习这两种语言)自动创建嵌套的循环和条件判断?

非常感谢!

5 个回答

3

在Java中,一些简单的通用实现至少需要两个类:

一个委托类,用于传递给递归算法,这样你就可以在执行的任何地方接收更新。可以像这样:

public interface IDelegate {
   public void found(List<CombinationFinder.FoundElement> nstack);
}

循环的实现,类似于:

public class CombinationFinder {
   private CombinationFinder next;
   private int multiplier;

   public CombinationFinder(int multiplier) {
      this(multiplier, null);
   }
   public CombinationFinder(int multiplier, CombinationFinder next) {
      this.multiplier = multiplier;
      this.next = next;
   }

   public void setNext(CombinationFinder next) {
      this.next = next;
   }

   public CombinationFinder getNext() {
      return next;
   }

   public void search(int max, IDelegate d) {
      Stack<FoundElement> stack = new Stack<FoundElement>();
      this.search(0, max, stack, d);
   }

   private void search(int start, int max, Stack<FoundElement> s, IDelegate d) {
      for (int i=0, val; (val = start + (i*multiplier)) <= max; i++) {
         s.push(i);
         if (null != next) {
            next.search(val, max, s, d);
         } else if (val == max) {
            d.found(s);
         } 
         s.pop();
      }
   } 

   static public class FoundElement {
      private int value;
      private int multiplier;
      public FoundElement(int value, int multiplier) {
         this.value = value;
         this.multiplier = multiplier;
      }
      public int getValue() {
         return value;
      }
      public int getMultiplier() {
         return multiplier;
      }
      public String toString() {
         return value+"*"+multiplier;
      }
   }
}

最后,设置和运行(测试):

CombinationFinder a1 = new CombinationFinder(20);
CombinationFinder a2 = new CombinationFinder(5);
CombinationFinder a3 = new CombinationFinder(10);

a1.setNext(a2);
a2.setNext(a3);

a1.search(100, new IDelegate() {
   int count = 1;
   @Override
   public void found(List<CombinationFinder.FoundElement> nstack) {
      System.out.print("#" + (count++) + " Found : ");
      for (int i=0; i<nstack.size(); i++) {
         if (i>0) System.out.print(" + ");
            System.out.print(nstack.get(i));
         }
         System.out.println();
      }
   }
});

这将输出36个解决方案。

通过这个概念,你可以有任意数量的内部循环,甚至可以通过继承来定制每一个循环。如果你想重用对象(比如:a1.setNext(a1);),也没有任何问题。

** 更新 **

因为我喜欢monty解决方案,所以我忍不住去测试了一下,结果稍微调整了一下。

免责声明 所有的功劳都归monty,感谢他的算法。

public class PolynomialSolver {

   private SolverResult delegate;
   private int min = 0;
   private int max = Integer.MAX_VALUE;

   public PolynomialSolver(SolverResult delegate) {
      this.delegate = delegate;
   }

   public SolverResult getDelegate() {
      return delegate;
   }

   public int getMax() {
      return max;
   }

   public int getMin() {
      return min;
   }

   public void setRange(int min, int max) {
      this.min = min;
      this.max = max;
   }

   public void solve(int[] constants, int total) {
      solveImpl(constants, new int[constants.length], total, 0, 0);
   }

   private void solveImpl(int[] c, int[] v, int t, int n, int r) {
      if (n == c.length) { //your end condition for the recursion
         if (r == t) {
            delegate.solution(c, v, t);
         }
      } else if (r <= t){ //keep going
         for (int i=min, j; (i<=max) && ((j=r+c[n]*i)<=t); i++) {
            v[n] = i;
            solveImpl(c, v, t, n+1, j);
         }
      }
   }

   static public interface SolverResult {
      public void solution(int[] constants, int[] variables, int total);
   }

   static public void main(String...args) {

      PolynomialSolver solver = new PolynomialSolver(new SolverResult() {
         int count = 1;
         @Override
         public void solution(int[] constants, int[] variables, int total) {
            System.out.print("#"+(count++)+" Found : ");
            for (int i=0, len=constants.length; i<len; i++) {
               if (i>0) System.out.print(" + ");
               System.out.print(constants[i]+"*"+variables[i]);
            }
            System.out.println(" = " + total);
         }
      });

      // test some constants = total
      solver.setRange(-10, 20);
      solver.solve(new int[] {20, 5, 10}, 100); // will output 162 solutions

   }
}
7

虽然这个方法可能不太适合处理大数据量,但这里有一个非常简单的暴力破解的Python解决方案,不需要用到递归:

import itertools
target_sum = 100
a = 20
b = 5
c = 10
a_range = range(0, target_sum + 1, a)
b_range = range(0, target_sum + 1, b)
c_range = range(0, target_sum + 1, c)
for i, j, k in itertools.product(a_range, b_range, c_range):
    if i + j + k == 100:
        print i, ',', j, ',', k

另外,还有一些方法可以计算任意列表的笛卡尔积,而不需要递归。(lol指的是列表的列表)

def product_gen(*lol):
    indices = [0] * len(lol)
    index_limits = [len(l) - 1 for l in lol]
    while indices < index_limits:
        yield [l[i] for l, i in zip(lol, indices)]
        for n, index in enumerate(indices):
            index += 1
            if index > index_limits[n]:
                indices[n] = 0
            else:
                indices[n] = index
                break
    yield [l[i] for l, i in zip(lol, indices)]

如果你刚开始学习Python,可能对yield语句或zip函数不太熟悉;在这种情况下,下面的代码会更容易理解。

def product(*lol):
    indices = [0] * len(lol)
    index_limits = [len(l) - 1 for l in lol]
    index_accumulator = []
    while indices < index_limits:
        index_accumulator.append([lol[i][indices[i]] for i in range(len(lol))])
        for n, index in enumerate(indices):
            index += 1
            if index > index_limits[n]:
                indices[n] = 0
            else:
                indices[n] = index
                break
    index_accumulator.append([lol[i][indices[i]] for i in range(len(lol))])
    return index_accumulator

你在代码中做了一件聪明的事,就是跳过那些i + j + k大于sum的值。这些代码都没有这样做。不过,可以对后面两个代码进行修改来实现这一点,但会失去一些通用性。

13

递归。

你想要解决的问题大概是这样的:

你当前的例子是:20x1 + 5x2 + 10x3 = 100

所以一般来说,你是在做:A1x1 + A2x2 + ... + Anxn = 总和

你需要传入一个常数数组 {A1, A2, ..., An},然后你想要求解 {x1, x2, ..., xn}。

    public void findVariables(int[] constants, int sum, 
                              int[] variables, int n, int result) {
        if (n == constants.length) { //your end condition for the recursion
            if (result == sum) {
                printArrayAsList(variables);
            }
        } else if (result <= sum){ //keep going
            for (int i = 0; result + constants[n]*i <= sum; i++) {
                variables[n] = i;
                findVariables(constants, sum, variables, n+1, result+constants[n]*i);
            }
        }
    }

要调用你的例子,你可以使用:

    findVariables(new int[] {20, 5, 20}, 100, new int[] {0,0,0}, 0, 0)

撰写回答