如何从OpenCV和Python中获取HOG图像特征?
我看过一篇关于如何使用OpenCV的HOG行人检测器的帖子: 我该如何使用OpenCV检测和跟踪人?
我想用HOG来检测图像中的其他类型物体(不仅仅是行人)。但是,Python中HOGDetectMultiScale的绑定似乎无法直接访问实际的HOG特征。
有没有办法用Python和OpenCV直接从任何图像中提取HOG特征?
6 个回答
18
这里有一个只用OpenCV的解决方案:
import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.cvtColor(cv2.imread("/home/me/Downloads/cat.jpg"),
cv2.COLOR_BGR2GRAY)
cell_size = (8, 8) # h x w in pixels
block_size = (2, 2) # h x w in cells
nbins = 9 # number of orientation bins
# winSize is the size of the image cropped to an multiple of the cell size
hog = cv2.HOGDescriptor(_winSize=(img.shape[1] // cell_size[1] * cell_size[1],
img.shape[0] // cell_size[0] * cell_size[0]),
_blockSize=(block_size[1] * cell_size[1],
block_size[0] * cell_size[0]),
_blockStride=(cell_size[1], cell_size[0]),
_cellSize=(cell_size[1], cell_size[0]),
_nbins=nbins)
n_cells = (img.shape[0] // cell_size[0], img.shape[1] // cell_size[1])
hog_feats = hog.compute(img)\
.reshape(n_cells[1] - block_size[1] + 1,
n_cells[0] - block_size[0] + 1,
block_size[0], block_size[1], nbins) \
.transpose((1, 0, 2, 3, 4)) # index blocks by rows first
# hog_feats now contains the gradient amplitudes for each direction,
# for each cell of its group for each group. Indexing is by rows then columns.
gradients = np.zeros((n_cells[0], n_cells[1], nbins))
# count cells (border cells appear less often across overlapping groups)
cell_count = np.full((n_cells[0], n_cells[1], 1), 0, dtype=int)
for off_y in range(block_size[0]):
for off_x in range(block_size[1]):
gradients[off_y:n_cells[0] - block_size[0] + off_y + 1,
off_x:n_cells[1] - block_size[1] + off_x + 1] += \
hog_feats[:, :, off_y, off_x, :]
cell_count[off_y:n_cells[0] - block_size[0] + off_y + 1,
off_x:n_cells[1] - block_size[1] + off_x + 1] += 1
# Average gradients
gradients /= cell_count
# Preview
plt.figure()
plt.imshow(img, cmap='gray')
plt.show()
bin = 5 # angle is 360 / nbins * direction
plt.pcolor(gradients[:, :, bin])
plt.gca().invert_yaxis()
plt.gca().set_aspect('equal', adjustable='box')
plt.colorbar()
plt.show()
我使用了HOG描述符的计算和可视化来理解数据的布局,并对循环进行了向量化处理。
47
1. 获取内置文档:在你的 Python 控制台输入以下命令,可以帮助你了解 HOGDescriptor 类的结构:
import cv2;
help(cv2.HOGDescriptor())
2. 示例代码:下面是一段代码,用于初始化一个 cv2.HOGDescriptor,使用了不同的参数(这里的术语都是 OpenCV 文档中定义的标准术语,详细信息可以在 这里找到):
import cv2
image = cv2.imread("test.jpg",0)
winSize = (64,64)
blockSize = (16,16)
blockStride = (8,8)
cellSize = (8,8)
nbins = 9
derivAperture = 1
winSigma = 4.
histogramNormType = 0
L2HysThreshold = 2.0000000000000001e-01
gammaCorrection = 0
nlevels = 64
hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,
histogramNormType,L2HysThreshold,gammaCorrection,nlevels)
#compute(img[, winStride[, padding[, locations]]]) -> descriptors
winStride = (8,8)
padding = (8,8)
locations = ((10,20),)
hist = hog.compute(image,winStride,padding,locations)
3. 理由:最终得到的 hog 描述符的维度是:9 个方向 X (4 个角落块(每个块进行 1 次归一化) + 6x4 个边缘块(每个块进行 2 次归一化) + 6x6 个块(每个块进行 4 次归一化)) = 1764。因为我只给了 hog.compute() 一个位置。
4. 另一种初始化方式是通过包含所有参数值的 XML 文件:
hog = cv2.HOGDescriptor("hog.xml")
要获取 XML 文件,可以执行以下操作:
hog = cv2.HOGDescriptor()
hog.save("hog.xml")
然后在 XML 文件中编辑相应的参数值。
169
在Python的OpenCV库中,你可以这样计算HOG特征:
import cv2
hog = cv2.HOGDescriptor()
im = cv2.imread(sample)
h = hog.compute(im)