在Linux中,gc.collect()后Python分配的内存仍未释放

7 投票
2 回答
1955 浏览
提问于 2025-04-16 17:30

我在Python中写了一段代码,但它的内存释放不太正常。Python占用了内存,但即使不再使用,这部分内存也不会被释放。即使你用ctrl+c强制停止程序,删除变量后再运行gc.collect(),内存似乎也没有被回收。就算在Ipython中运行%reset,内存也不会释放,gc.collect()也没有效果。我在Windows上测试了这个问题,想看看是不是和垃圾回收库有关,结果发现确实是这样。你可以在Linux和Windows上运行下面的代码,然后比较一下内存使用情况。你需要安装numpy和scipy。对此问题的任何帮助或见解都非常感谢。

导入模型,创建一个实例,然后运行createSpecific()。

以下是在Ubuntu 10.04中表现出这种情况的代码:

from numpy import array, maximum,intersect1d, meshgrid, std, log, log10, zeros, ones, argwhere, abs, arange, size, copy, sqrt, sin, cos, pi, vstack, hstack, zeros, exp, max, mean, savetxt, loadtxt,  minimum,  linspace,  where
from numpy.fft import fft
from scipy.stats import f_oneway, kruskal, sem, scoreatpercentile
#import matplotlib
#matplotlib.use('cairo.pdf')
from matplotlib.pyplot import plot, clf, show, cla, xlim, xscale, imshow, ylabel, xlabel, figure, savefig, close,  bar,  title,  xticks, yticks, axes, axis
from matplotlib.axes import Axes
from mpl_toolkits.mplot3d import Axes3D
#from enthought.mayavi import mlab
from matplotlib import cm
import matplotlib.pyplot as plt
import os
from time import clock
from timeit import Timer
class Model:

#Constructors and default includes
    def __init__(self, prevAud = None,  debug=False):

        if (prevAud == None):
            self.fs=16000. #sample rate
            self.lowFreq=60. 
            self.hiFreq=5000.     
            self.numFilt=300 #number of channel
            self.EarQ = 9.26449   #9.26449
            self.minBW = 24.7     #24.7
            self.integrationWindow=.01
            self.sliceAt=.035
            self.maxOverallInhibit = 0.1
            self.winLen = int(self.fs*self.integrationWindow+.01) #default integration window 10 ms
            self.fullWind = 0.300
            self.outShortWindow = None
            self.siderArray = None
            self.maxNormalizeValue = .284     # Optimized at .284
            self.outputSemiModel = None
            self.semitones = 11
            self.activationTrace = None
        return




    def setErbScale(self, erbScale = None):
        if (erbScale ==None):
            self.erbScale = arange(100,500,5)
        else:
            self.erbScale = erbScale        

    def trainModel(self,soundVec=None, fs=None, lowfreq=None, highfreq=None, numfilt=None, figto=0, savefig = 'N', prompts=False, plotter=False):
        self.setErbScale()
        templateArray = self.intWindow(self.halfWaveRec(self.creGammatone(soundVec))) 
        for i in xrange(templateArray[0].size):        
            self.outerTest(self.innerTest(templateArray[:,i]))

        return templateArray   


    def createSpecific(self, freqArray = None, semitones = 11, timeforHarm = .3, soundVec=None, fs=None, lowfreq=None, highfreq=None, numfilt=None, figto=0, saveData='N', fileDir='TempRunT/', prompts=False, plotter=False):
        if (freqArray == None):
            self.setErbScale()
            freqArray = self.erbScale
        if (type(semitones) == int):
            semitones = arange(semitones+1)
        totalRuns = int(timeforHarm/self.integrationWindow+.001)
        inhibitWindowArray = zeros((freqArray.size,(semitones.size),self.numFilt,totalRuns))
        for x in xrange(freqArray.size):
            tempHarm = self.makeHarmonicAmpMod(freqArray[x],timeforHarm, numHarm=7,modulation=10)
            for y in semitones:
                tempChord = self.makeSemiChordAmpMod(tempHarm, freqArray[x],timeforHarm,modulation=10,numHarm=7,semi=y)
                inhibitWindowArray[x,y] = self.trainModel( tempChord, savefig = 'N', plotter=plotter)


        self.inhibitWindowArray = inhibitWindowArray

    def creGammatone(self, soundVec):

        temp = zeros((300,soundVec.size))
        for i in xrange(temp[:,0].size):
            temp[i] = -1**i*soundVec
        return temp

    def halfWaveRec(self, halfWaveFilts):

        filtShape = halfWaveFilts.shape
        if (filtShape[1] != int(self.fs*self.fullWind)):
            halfWaveFilts = hstack((halfWaveFilts,zeros((self.numFilt,int(self.fs*self.fullWind)-filtShape[1]))))
        temp = zeros((halfWaveFilts[:,0].size,halfWaveFilts[0].size))
        halfWaveFilts = maximum(halfWaveFilts,temp)

        del temp                
        return halfWaveFilts

    def intWindow(self, integratedFilts):
        winlen = self.winLen

        length = integratedFilts[0].size/winlen
        mod = integratedFilts[0].size%winlen
        outShortWindow = zeros((integratedFilts[:,0].size,length))
        meanval = 0

        if (mod != 0):
            for i in xrange(integratedFilts[:,0].size):
                mean(integratedFilts[i,0:-mod].reshape(length,winlen),1,out=outShortWindow[i])
        else:
            for i in xrange(integratedFilts[:,0].size):
                mean(integratedFilts[i].reshape(length,winlen),1,out=outShortWindow[i])
        del integratedFilts
        return outShortWindow    

    def innerTest(self, window):
        temper = copy(window)
        sider = 7
        st = .04
        sizer = temper.size
        inhibVal = 0
        for j in xrange(sider):
            inhibVal = (temper[0:j+sider+1].sum())*(sider*2+1)/(sider+1+j)
            window[j] += - st*(inhibVal)
        for j in xrange(sider,sizer - sider):
            inhibVal = temper[j-sider:j+sider+1].sum()
            window[j] += - st*(inhibVal)
        for j in xrange(sizer-sider, sizer):
            inhibVal = (temper[j-sider:sizer].sum())*(sider*2+1)/(sider+sizer-j)
            window[j] += - st*(inhibVal)

        maxsub = max(window) * self.maxOverallInhibit
        window += - maxsub    
        del temper
        return window

    def outerTest(self, window):
        newSatValue = scoreatpercentile(window, (76))
        numones = where(window > newSatValue)
        window[numones]=1
        self.maxSatValue = newSatValue
        del numones
        return window

    def makeHarmonicAmpMod(self, freq = 100, time = 1.,modulation=10, fsamp=None, numHarm=7):
        if fsamp == None: fsamp = self.fs
        samples = arange(time*fsamp)
        signal = 0
        for x in xrange(1,(numHarm+1),1):
            signal = signal + sin(samples/float(fsamp)*x*freq*2*pi)
        signal = (signal)*maximum(zeros(time*fsamp),sin((samples/float(fsamp)*modulation*2*pi)))
        return signal

    def makeSemiChordAmpMod(self, harmVec = None, freq=100, time = 1.,  modulation=10, fsamp=None, numHarm=7, semi = 2):
        if (harmVec == None): harmVec = self.makeHarmonicAmpMod(freq,time,modulation,fsamp,numHarm)
        if (semi == 0): return harmVec
        return harmVec + self.makeHarmonicAmpMod(freq*(2**(semi/12.)),time,modulation,fsamp,numHarm)

2 个回答

1

虚拟内存并不是一种稀缺资源。每个程序都有自己的地址空间,所以不需要把它归还给系统。你真正遇到的问题是什么呢?这种情况给你带来了什么困扰?

0

我安装了最新版本的numpy,问题就解决了。我猜这个问题可能出在numpy的某个功能上。不过我没时间去深入研究这个问题。

撰写回答