在nltk中使用MaxentClassifier的CG算法时出现ValueError
当我尝试使用MaxentClassifier的示例时,来自这个链接:http://nltk.googlecode.com/svn/trunk/doc/howto/classify.html,我遇到了下面的错误:
Grad eval #0
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
classifier = MaxentClassifier.train(train)
File "C:\Python27\lib\site-packages\nltk\classify\maxent.py", line 323, in train
gaussian_prior_sigma, **cutoffs)
File "C:\Python27\lib\site-packages\nltk\classify\maxent.py", line 1456, in train_maxent_classifier_with_scipy
model.fit(algorithm=algorithm)
File "C:\Python27\lib\site-packages\scipy\maxentropy\maxentropy.py", line 1026, in fit
return model.fit(self, self.K, algorithm)
File "C:\Python27\lib\site-packages\scipy\maxentropy\maxentropy.py", line 226, in fit
callback=callback)
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 636, in fmin_cg
gfk = myfprime(x0)
File "C:\Python27\lib\site-packages\scipy\optimize\optimize.py", line 176, in function_wrapper
return function(x, *args)
File "C:\Python27\lib\site-packages\scipy\maxentropy\maxentropy.py", line 420, in grad
G = self.expectations() - self.K
ValueError: operands could not be broadcast together with shapes (54) (12)
Python代码:
train = [(dict(a=1,b=1,c=1), 'y'),
(dict(a=1,b=1,c=1), 'x'),
(dict(a=1,b=1,c=0), 'y'),
(dict(a=0,b=1,c=1), 'x'),
(dict(a=0,b=1,c=1), 'y'),
(dict(a=0,b=0,c=1), 'y'),
(dict(a=0,b=1,c=0), 'x'),
(dict(a=0,b=0,c=0), 'x')]
test = [(dict(a=1,b=0,c=1)), # unseen
(dict(a=1,b=0,c=0)), # unseen
(dict(a=0,b=1,c=1)), # seen 3 times, labels=y,y,x
(dict(a=0,b=1,c=0)) # seen 1 time, label=x
]
classifier = MaxentClassifier.train(train)
但是我不知道该怎么解决这个问题。请帮帮我,谢谢!
1 个回答
3
如果你设置了算法,它就能正常工作:
>>> algorithm = nltk.classify.MaxentClassifier.ALGORITHMS[0]
>>> algorithm
'GIS'
>>> classifier = nltk.MaxentClassifier.train(train, algorithm)
==> Training (100 iterations)
Iteration Log Likelihood Accuracy
---------------------------------------
1 -0.69315 0.556
2 -0.65164 0.778
3 -0.62713 0.778
4 -0.61084 0.667
5 -0.59935 0.667
6 -0.59096 0.667
.................................
.................................
(注意你漏掉了一行训练数据)
补充:有几个nltk的算法会出问题,包括'CG'。这个问题可能和这里报告的情况类似。如果是这样的话,可能在nltk的下一个版本中会解决。你也可以向nltk报告这个bug,这样既能帮助开发者,也能帮助自己。
因为这个报告的bug似乎和numpy的广播功能以及过时的numpy用法有关,也许你可以尝试使用旧版本的numpy。