这个Python图像模糊函数有什么问题?

5 投票
2 回答
4769 浏览
提问于 2025-04-16 14:58

编辑: 感谢Howard的帮助,我已经修正了代码,现在看起来可以正常工作了。

编辑2: 我更新了代码,加入了原本想要的垂直模糊效果。这里是不同设置下的效果对比:模糊效果对比图.jpg

关于模糊操作的另一个参考(Java):初学者的模糊教程


原始帖子:

我正在学习基本的图像处理,想要在Python中复制这个简单的模糊方法(在“重用结果”下的第二个函数BlurHorizontal)。我知道PIL里已经有模糊函数了,但我想自己尝试一下基本的像素操作。

这个函数应该接收一张源图像,然后根据一定的半径计算RGB像素值的平均值,并把处理后的图像写入一个新文件。我的问题是,我得到的很多像素的平均值完全错误(例如,在某些区域出现明亮的绿色线条,而不是红色)。

在模糊半径为2的情况下,平均方法会对输入像素周围的5个像素的RGB值进行累加。它使用一个“滑动窗口”来保持一个运行总和,减去即将离开的像素(左侧)并添加新的进入像素(窗口的右侧)。这里解释了模糊方法

示例:模糊测试图像输出.jpg

有没有人知道我哪里出错了?我不明白为什么图像的某些部分模糊得很干净,而其他区域却充满了与周围区域完全无关的颜色。

谢谢你的帮助。

修复后的工作代码(感谢Howard)

import Image, numpy, ImageFilter
img = Image.open('testimage.jpg')

imgArr = numpy.asarray(img) # readonly

# blur radius in pixels
radius = 2

# blur window length in pixels
windowLen = radius*2+1

# columns (x) image width in pixels
imgWidth = imgArr.shape[1]

# rows (y) image height in pixels
imgHeight = imgArr.shape[0]

#simple box/window blur
def doblur(imgArr):
    # create array for processed image based on input image dimensions
    imgB = numpy.zeros((imgHeight,imgWidth,3),numpy.uint8)
    imgC = numpy.zeros((imgHeight,imgWidth,3),numpy.uint8)

    # blur horizontal row by row
    for ro in range(imgHeight):
        # RGB color values
        totalR = 0
        totalG = 0
        totalB = 0

        # calculate blurred value of first pixel in each row
        for rads in range(-radius, radius+1):
            if (rads) >= 0 and (rads) <= imgWidth-1:
                totalR += imgArr[ro,rads][0]/windowLen
                totalG += imgArr[ro,rads][1]/windowLen
                totalB += imgArr[ro,rads][2]/windowLen

        imgB[ro,0] = [totalR,totalG,totalB]

        # calculate blurred value of the rest of the row based on
        # unweighted average of surrounding pixels within blur radius
        # using sliding window totals (add incoming, subtract outgoing pixels)
        for co in range(1,imgWidth):
            if (co-radius-1) >= 0:
                totalR -= imgArr[ro,co-radius-1][0]/windowLen
                totalG -= imgArr[ro,co-radius-1][1]/windowLen
                totalB -= imgArr[ro,co-radius-1][2]/windowLen
            if (co+radius) <= imgWidth-1:
                totalR += imgArr[ro,co+radius][0]/windowLen
                totalG += imgArr[ro,co+radius][1]/windowLen
                totalB += imgArr[ro,co+radius][2]/windowLen

            # put average color value into imgB pixel

            imgB[ro,co] = [totalR,totalG,totalB]

    # blur vertical

    for co in range(imgWidth):
        totalR = 0
        totalG = 0
        totalB = 0

        for rads in range(-radius, radius+1):
            if (rads) >= 0 and (rads) <= imgHeight-1:
                totalR += imgB[rads,co][0]/windowLen
                totalG += imgB[rads,co][1]/windowLen
                totalB += imgB[rads,co][2]/windowLen

        imgC[0,co] = [totalR,totalG,totalB]

        for ro in range(1,imgHeight):
            if (ro-radius-1) >= 0:
                totalR -= imgB[ro-radius-1,co][0]/windowLen
                totalG -= imgB[ro-radius-1,co][1]/windowLen
                totalB -= imgB[ro-radius-1,co][2]/windowLen
            if (ro+radius) <= imgHeight-1:
                totalR += imgB[ro+radius,co][0]/windowLen
                totalG += imgB[ro+radius,co][1]/windowLen
                totalB += imgB[ro+radius,co][2]/windowLen

            imgC[ro,co] = [totalR,totalG,totalB]

    return imgC

# number of times to run blur operation
blurPasses = 3

# temporary image array for multiple passes
imgTmp = imgArr

for k in range(blurPasses):
    imgTmp = doblur(imgTmp)
    print "pass #",k,"done."

imgOut = Image.fromarray(numpy.uint8(imgTmp))

imgOut.save('testimage-processed.png', 'PNG')

2 个回答

0

我稍微修改了一下你的代码,觉得可以分享一下。我需要一个自定义模糊的功能,它要满足两个条件:1)能处理数据数组,2)只在水平方向上模糊,而不是垂直方向。正如TODO所提到的,我在考虑进一步改进,让它可以进行部分像素混合(比如0.5)。希望这对某些人有帮助:

def blur_image(image_data, blur_horizontal=True, blur_vertical=True, height=256, width=256, radius=1):
    #TODO: Modify to support partial pixel blending

    # blur window length in pixels
    blur_window = radius*2+1

    out_image_data = image_data

    # blur horizontal row by row, and wrap around edges
    if blur_horizontal:
        for row in range(height):
            for column in range(0, width):
                total_red = 0
                total_green = 0
                total_blue = 0

                for rads in range(-radius, radius+1):
                    pixel = (row*width) + ((column+rads) % width)
                    total_red += image_data[pixel][0]/blur_window
                    total_green += image_data[pixel][1]/blur_window
                    total_blue += image_data[pixel][2]/blur_window

                out_image_data[row*width + column] = (total_red, total_green, total_blue, 255)
        image_data = out_image_data

    # blur vertical, but no wrapping
    if blur_vertical:
        for column in range(width):
            for row in range(0, height):
                total_red = 0
                total_green = 0
                total_blue = 0

                blur_window = 0
                for rads in range(-radius, radius+1):
                    if rads in range(0, height):
                        blur_window += 1

                for rads in range(-radius, radius+1):
                    row_mod = row+rads
                    if row_mod in range(0, height):
                        pixel = (row_mod*width) + column
                        total_red += image_data[pixel][0]/blur_window
                        total_green += image_data[pixel][1]/blur_window
                        total_blue += image_data[pixel][2]/blur_window

                out_image_data[row*width + column] = (total_red, total_green, total_blue, 255)
        image_data = out_image_data

    return image_data

你可以在已经有一个包含RGBA像素的图像数组时使用它,然后运行:

image_data = blur_image(image_data, height=height, width=width, radius=2)

im = Image.new('RGB', (width, height))
im.putdata(image_data)
2

我想你在这行代码上遇到了问题:

for rads in range(-radius, radius):

这行代码的运行范围只到半径减一(也就是说最后一个数字不包括在内)。你需要在第二个范围的参数上加一。

更新:在这行代码中还有一个小问题:

if (co-radius-1) > 0:

应该改成:

if (co-radius-1) >= 0:

撰写回答