Python 和 Ollama 的问题
你最近怎么样?
我在一台Mac M2上使用Python 3.11.7。我在一个虚拟环境(venv)中有一份依赖列表。
我在使用Ollama时遇到了一些问题。我在本地和使用Docker进行测试,但错误信息并没有帮助我找出问题所在。
我的想法是加载一个HTML文件,并能够在这个上下文中进行查询。
这是我的代码:
from langchain_community.llms import Ollama
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import Chroma
from langchain_community import embeddings
from langchain_community.chat_models import ChatOllama
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain.text_splitter import CharacterTextSplitter
model_local = Ollama(base_url="http://192.168.0.200:11434", model="mistral")
# 1. Split data into chunks
urls = [
"https://es.wikipedia.org/wiki/The_A-Team",
]
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100)
doc_splits = text_splitter.split_documents(docs_list)
# 2. Convert documents to Embeddings and store them
vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=embeddings.ollama.OllamaEmbeddings(model='nomic-embed-text'),
)
retriever = vectorstore.as_retriever()
# 3. Before RAG
print("Before RAG\n")
before_rag_template = "What is {topic}"
before_rag_prompt = ChatPromptTemplate.from_template(before_rag_template)
before_rag_chain = before_rag_prompt | model_local | StrOutputParser()
print(before_rag_chain.invoke({"topic": "Ollama"}))
# 4. After RAG
print("\n########\nAfter RAG\n")
after_rag_template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template)
after_rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| after_rag_prompt
| model_local
| StrOutputParser()
)
print(after_rag_chain.invoke("Quien integra Brigada A?"))
在右边我列出了模型,左边则是检查Ollama是否有回应。
错误
cd /Users/santiago/Proyects/OllamaURL ; /usr/bin/env /Users/santiago/Proyects/OllamaURL/env/bin/python /Users/santiago/.vscode/extensions/ms-python.debugpy-2024.2.0-darwin-arm64/bundled/libs/debugpy/adapter/../../debugpy/launcher 54637 -- /Users/santiago/Proyects/OllamaURL/rag.py
Traceback (most recent call last):
File "/Users/santiago/Proyects/OllamaURL/rag.py", line 25, in <module>
vectorstore = Chroma.from_documents(
^^^^^^^^^^^^^^^^^^^^^^
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/vectorstores/chroma.py", line 778, in from_documents
return cls.from_texts(
^^^^^^^^^^^^^^^
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/vectorstores/chroma.py", line 736, in from_texts
chroma_collection.add_texts(
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/vectorstores/chroma.py", line 275, in add_texts
embeddings = self._embedding_function.embed_documents(texts)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py", line 204, in embed_documents
embeddings = self._embed(instruction_pairs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py", line 192, in _embed
return [self._process_emb_response(prompt) for prompt in iter_]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py", line 192, in <listcomp>
return [self._process_emb_response(prompt) for prompt in iter_]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/santiago/Proyects/OllamaURL/env/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py", line 166, in _process_emb_response
raise ValueError(
ValueError: Error raised by inference API HTTP code: 404, {"error":"model 'nomic-embed-text' not found, try pulling it first"}
我希望你能指导我解决这个错误。
2 个回答
0
默认情况下,OllamaEmbeddings
的base_url
是http://localhost:11434
。如果你想要把base_url
设置成http://192.168.0.200:11434
,可以这样做。
vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=embeddings.ollama.OllamaEmbeddings(
base_url='http://192.168.0.200:11434',
model='nomic-embed-text'
),
)
参考资料
1
我对你的代码做了一些调整,并成功运行了。以下是代码
from langchain.text_splitter import CharacterTextSplitter
from langchain.schema.document import Document
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=20)
text = "I am going to tell you a story about Tintin."
docs = [Document(page_content=x) for x in text_splitter.split_text(text)]
from langchain_community.vectorstores import Chroma
from langchain_community.llms import Ollama
from langchain_community import embeddings
persist_directory = "/tmp/chromadb"
vectorstore = Chroma.from_documents(
documents=docs,
collection_name="test",
embedding=embeddings.ollama.OllamaEmbeddings(model='nomic-embed-text')
)
retriever = vectorstore.as_retriever()
from langchain_community.llms import Ollama
llm = Ollama(model="mistral")
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
print(rag_chain.invoke("tell me a story"))
我们可以看看你提供的错误信息
ValueError: Error raised by inference API HTTP code: 404, {"error":"model 'nomic-embed-text' not found, try pulling it first"}
你确定Ollama已经拉取了这样的嵌入模型吗?我通过运行以下命令拉取了它
ollama pull nomic-embed-text
Ollama嵌入参考 > https://python.langchain.com/docs/integrations/text_embedding/ollama