Python的extend是如何工作的?
如果我有一个列表:
a = [1,2,3,4]
然后我用扩展方法添加4个元素:
a.extend(range(5,10))
最后我得到:
a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
那么,Python是怎么做到的呢?它是创建一个新列表然后把元素复制过去,还是直接把'a'变大了?我有点担心使用扩展会占用太多内存。另外,我还看到在我正在修改的代码里,有个评论说扩展10000次每次100比一次性扩展1000000要快。
5 个回答
1
它的工作方式就像是这样定义的
def extend(lst, iterable):
for x in iterable:
lst.append(x)
这会改变原来的列表,而不是创建一个副本。
根据具体的实现方式,append
(添加)和extend
(扩展)可能会让列表复制它自己的数据结构,但这很正常,不用担心。例如,基于数组的实现通常会以指数方式增长底层数组,因此在增长时需要复制元素列表。
3
3
L.extend(M) 的时间复杂度是摊销 O(n),其中 n 是 m 的长度,所以一般来说,过多的复制并不是个大问题。只有在没有足够空间来扩展时,才会出现复制的情况。当列表很大,而你对单次扩展调用的时间有要求时,这就成了一个问题。
在这种情况下,你应该考虑寻找一种更高效的数据结构来解决你的问题。不过在实际使用中,这种情况很少发生。
下面是 CPython 中相关的代码,你可以看到在扩展列表时会额外分配空间,以避免过多的复制。
static PyObject *
listextend(PyListObject *self, PyObject *b)
{
PyObject *it; /* iter(v) */
Py_ssize_t m; /* size of self */
Py_ssize_t n; /* guess for size of b */
Py_ssize_t mn; /* m + n */
Py_ssize_t i;
PyObject *(*iternext)(PyObject *);
/* Special cases:
1) lists and tuples which can use PySequence_Fast ops
2) extending self to self requires making a copy first
*/
if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) {
PyObject **src, **dest;
b = PySequence_Fast(b, "argument must be iterable");
if (!b)
return NULL;
n = PySequence_Fast_GET_SIZE(b);
if (n == 0) {
/* short circuit when b is empty */
Py_DECREF(b);
Py_RETURN_NONE;
}
m = Py_SIZE(self);
if (list_resize(self, m + n) == -1) {
Py_DECREF(b);
return NULL;
}
/* note that we may still have self == b here for the
* situation a.extend(a), but the following code works
* in that case too. Just make sure to resize self
* before calling PySequence_Fast_ITEMS.
*/
/* populate the end of self with b's items */
src = PySequence_Fast_ITEMS(b);
dest = self->ob_item + m;
for (i = 0; i < n; i++) {
PyObject *o = src[i];
Py_INCREF(o);
dest[i] = o;
}
Py_DECREF(b);
Py_RETURN_NONE;
}
it = PyObject_GetIter(b);
if (it == NULL)
return NULL;
iternext = *it->ob_type->tp_iternext;
/* Guess a result list size. */
n = _PyObject_LengthHint(b, 8);
if (n == -1) {
Py_DECREF(it);
return NULL;
}
m = Py_SIZE(self);
mn = m + n;
if (mn >= m) {
/* Make room. */
if (list_resize(self, mn) == -1)
goto error;
/* Make the list sane again. */
Py_SIZE(self) = m;
}
/* Else m + n overflowed; on the chance that n lied, and there really
* is enough room, ignore it. If n was telling the truth, we'll
* eventually run out of memory during the loop.
*/
/* Run iterator to exhaustion. */
for (;;) {
PyObject *item = iternext(it);
if (item == NULL) {
if (PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_StopIteration))
PyErr_Clear();
else
goto error;
}
break;
}
if (Py_SIZE(self) < self->allocated) {
/* steals ref */
PyList_SET_ITEM(self, Py_SIZE(self), item);
++Py_SIZE(self);
}
else {
int status = app1(self, item);
Py_DECREF(item); /* append creates a new ref */
if (status < 0)
goto error;
}
}
/* Cut back result list if initial guess was too large. */
if (Py_SIZE(self) < self->allocated)
list_resize(self, Py_SIZE(self)); /* shrinking can't fail */
Py_DECREF(it);
Py_RETURN_NONE;
error:
Py_DECREF(it);
return NULL;
}
PyObject *
_PyList_Extend(PyListObject *self, PyObject *b)
{
return listextend(self, b);
}