查找Python字典键
我想知道如何对一个Python字典里的键进行某种索引。这个字典大约有40万个项目,所以我想避免线性搜索。
基本上,我是想查找userinput
是否在字典的任何键里面。
for keys in dict:
if userinput in keys:
DoSomething()
break
这就是我想做的一个例子。有没有办法可以更直接地搜索,而不需要用循环?或者有什么更有效的方法。
说明:这个userinput
并不一定和键完全相同,比如userinput
可能是log
,而键是logfile
。
编辑:在搜索之前,任何列表/缓存的创建、预处理或组织都是可以的。唯一需要快速的就是查找键的过程。
6 个回答
不行。要在字典的键中查找字符串,唯一的方法就是一个个去看每个键。你提到的方法是用字典查找的唯一方式。
不过,如果你有40万条记录,想加快搜索速度,我建议你使用SQLite数据库。这样你可以直接用一句话来查询,比如 SELECT * FROM TABLE_NAME WHERE COLUMN_NAME LIKE '%userinput%';
。你可以查看Python的sqlite3模块的文档,在这里。
另一个选择是使用生成器表达式,因为它们通常比普通的for循环要快。
filteredKeys = (key for key in myDict.keys() if userInput in key)
for key in filteredKeys:
doSomething()
编辑:如果你说的没错,不在乎一次性的成本,那就用数据库。SQLite几乎能完美地满足你的需求。
我做了一些基准测试,结果让我惊讶,简单的算法实际上比使用列表推导的版本快两倍,比使用SQLite的版本快六倍。根据这些结果,我得支持@Mark Byers,推荐使用Trie(字典树)。我在下面贴了基准测试的结果,供有兴趣的人尝试。
import random, string, os
import time
import sqlite3
def buildDict(numElements):
aDict = {}
for i in xrange(numElements-10):
aDict[''.join(random.sample(string.letters, 6))] = 0
for i in xrange(10):
aDict['log'+''.join(random.sample(string.letters, 3))] = 0
return aDict
def naiveLCSearch(aDict, searchString):
filteredKeys = [key for key in aDict.keys() if searchString in key]
return filteredKeys
def naiveSearch(aDict, searchString):
filteredKeys = []
for key in aDict:
if searchString in key:
filteredKeys.append(key)
return filteredKeys
def insertIntoDB(aDict):
conn = sqlite3.connect('/tmp/dictdb')
c = conn.cursor()
c.execute('DROP TABLE IF EXISTS BLAH')
c.execute('CREATE TABLE BLAH (KEY TEXT PRIMARY KEY, VALUE TEXT)')
for key in aDict:
c.execute('INSERT INTO BLAH VALUES(?,?)',(key, aDict[key]))
return conn
def dbSearch(conn):
cursor = conn.cursor()
cursor.execute("SELECT KEY FROM BLAH WHERE KEY GLOB '*log*'")
return [record[0] for record in cursor]
if __name__ == '__main__':
aDict = buildDict(400000)
conn = insertIntoDB(aDict)
startTimeNaive = time.time()
for i in xrange(3):
naiveResults = naiveSearch(aDict, 'log')
endTimeNaive = time.time()
print 'Time taken for 3 iterations of naive search was', (endTimeNaive-startTimeNaive), 'and the average time per run was', (endTimeNaive-startTimeNaive)/3.0
startTimeNaiveLC = time.time()
for i in xrange(3):
naiveLCResults = naiveLCSearch(aDict, 'log')
endTimeNaiveLC = time.time()
print 'Time taken for 3 iterations of naive search with list comprehensions was', (endTimeNaiveLC-startTimeNaiveLC), 'and the average time per run was', (endTimeNaiveLC-startTimeNaiveLC)/3.0
startTimeDB = time.time()
for i in xrange(3):
dbResults = dbSearch(conn)
endTimeDB = time.time()
print 'Time taken for 3 iterations of DB search was', (endTimeDB-startTimeDB), 'and the average time per run was', (endTimeDB-startTimeDB)/3.0
os.remove('/tmp/dictdb')
顺便说一下,我的测试结果是:
Time taken for 3 iterations of naive search was 0.264658927917 and the average time per run was 0.0882196426392
Time taken for 3 iterations of naive search with list comprehensions was 0.403481960297 and the average time per run was 0.134493986766
Time taken for 3 iterations of DB search was 1.19464492798 and the average time per run was 0.398214975993
所有时间单位都是秒。
如果你只需要找到以某个前缀开头的键,那么你可以使用二分查找。像这样就可以完成这个任务:
import bisect
words = sorted("""
a b c stack stacey stackoverflow stacked star stare x y z
""".split())
n = len(words)
print n, "words"
print words
print
tests = sorted("""
r s ss st sta stack star stare stop su t
""".split())
for test in tests:
i = bisect.bisect_left(words, test)
if words[i] < test: i += 1
print test, i
while i < n and words[i].startswith(test):
print i, words[i]
i += 1
输出结果:
12 words
['a', 'b', 'c', 'stacey', 'stack', 'stacked', 'stackoverflow', 'star', 'stare',
'x', 'y', 'z']
r 3
s 3
3 stacey
4 stack
5 stacked
6 stackoverflow
7 star
8 stare
ss 3
st 3
3 stacey
4 stack
5 stacked
6 stackoverflow
7 star
8 stare
sta 3
3 stacey
4 stack
5 stacked
6 stackoverflow
7 star
8 stare
stack 4
4 stack
5 stacked
6 stackoverflow
star 7
7 star
8 stare
stare 8
8 stare
stop 9
su 9
t 9
如果你只需要找那些以某个前缀开头的键,那么你可以使用一种叫做字典树的结构。还有一些更复杂的数据结构可以用来查找包含某个子字符串的键,不管这个子字符串出现在键的哪个位置,但这些结构需要占用更多的存储空间,所以在存储空间和速度之间需要做个权衡。