地球搬运工距离的Python代码
我在找一个用Python实现的地球移动者距离(或者叫快速EMD)的代码。有没有人知道在哪里可以找到?我在网上找了很多地方。
我想在我正在做的图像检索项目中使用它。谢谢。
补充说明:
我找到了一种很不错的解决方案,使用了pulp库。这个页面上还有设置的说明。
3 个回答
0
Python Optimal Transport库是一个工具,它提供了几种方法来解决与最优运输相关的优化问题,这些问题通常出现在信号处理、图像处理和机器学习中。
2
这里是用Python计算两个相同长度的一维分布之间的地球搬运工距离的代码。
def emd (a,b):
earth = 0
earth1 = 0
diff = 0
s= len(a)
su = []
diff_array = []
for i in range (0,s):
diff = a[i]-b[i]
diff_array.append(diff)
diff = 0
for j in range (0,s):
earth = (earth + diff_array[j])
earth1= abs(earth)
su.append(earth1)
emd_output = sum(su)/(s-1)
print(emd_output)
28
在Python中,有一个很棒的实现来自OpenCv。这个函数叫做CalcEMD2,用来比较两张图片的直方图,简单的代码大概是这样的:
#Import OpenCv library
from cv2 import *
### HISTOGRAM FUNCTION #########################################################
def calcHistogram(src):
# Convert to HSV
hsv = cv.CreateImage(cv.GetSize(src), 8, 3)
cv.CvtColor(src, hsv, cv.CV_BGR2HSV)
# Extract the H and S planes
size = cv.GetSize(src)
h_plane = cv.CreateMat(size[1], size[0], cv.CV_8UC1)
s_plane = cv.CreateMat(size[1], size[0], cv.CV_8UC1)
cv.Split(hsv, h_plane, s_plane, None, None)
planes = [h_plane, s_plane]
#Define numer of bins
h_bins = 30
s_bins = 32
#Define histogram size
hist_size = [h_bins, s_bins]
# hue varies from 0 (~0 deg red) to 180 (~360 deg red again */
h_ranges = [0, 180]
# saturation varies from 0 (black-gray-white) to 255 (pure spectrum color)
s_ranges = [0, 255]
ranges = [h_ranges, s_ranges]
#Create histogram
hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1)
#Calc histogram
cv.CalcHist([cv.GetImage(i) for i in planes], hist)
cv.NormalizeHist(hist, 1.0)
#Return histogram
return hist
### EARTH MOVERS ############################################################
def calcEM(hist1,hist2,h_bins,s_bins):
#Define number of rows
numRows = h_bins*s_bins
sig1 = cv.CreateMat(numRows, 3, cv.CV_32FC1)
sig2 = cv.CreateMat(numRows, 3, cv.CV_32FC1)
for h in range(h_bins):
for s in range(s_bins):
bin_val = cv.QueryHistValue_2D(hist1, h, s)
cv.Set2D(sig1, h*s_bins+s, 0, cv.Scalar(bin_val))
cv.Set2D(sig1, h*s_bins+s, 1, cv.Scalar(h))
cv.Set2D(sig1, h*s_bins+s, 2, cv.Scalar(s))
bin_val = cv.QueryHistValue_2D(hist2, h, s)
cv.Set2D(sig2, h*s_bins+s, 0, cv.Scalar(bin_val))
cv.Set2D(sig2, h*s_bins+s, 1, cv.Scalar(h))
cv.Set2D(sig2, h*s_bins+s, 2, cv.Scalar(s))
#This is the important line were the OpenCV EM algorithm is called
return cv.CalcEMD2(sig1,sig2,cv.CV_DIST_L2)
### MAIN ########################################################################
if __name__=="__main__":
#Load image 1
src1 = cv.LoadImage("image1.jpg")
#Load image 1
src2 = cv.LoadImage("image2.jpg")
# Get histograms
histSrc1= calcHistogram(src1)
histSrc2= calcHistogram(src2)
# Compare histograms using earth mover's
histComp = calcEM(histSrc1,histSrc2,30,32)
#Print solution
print(histComp)
我用Python 2.7和Python(x,y)测试过一段和上面代码很相似的代码。如果你想了解更多关于地球搬运工算法的内容,并且想看看用OpenCV和C++实现的例子,可以阅读Gary Bradski和Adrain Kaebler的书《Learning OpenCV》第七章:“直方图与匹配”。