如何用Python创建非ASCII树状图?

0 投票
1 回答
612 浏览
提问于 2025-04-16 12:22

我在尝试用找到的代码块创建一个树状图,运行到某个地方时一切正常:

r('mt_dist <- dist(t(mt))')

然后就出现了这个错误:

RPy_RException: dist(t(mt)) 中出错:无法将(列表)对象转换为 'double' 类型

在那之前一切看起来都不错……我可能漏掉了什么很简单的东西

有没有人能帮帮我?

#importing modules
from numpy import array
from random import normalvariate,shuffle
from rpy import r

# creating a random matrix
# creating it with different 'samples' in different columns
mt = []
for l in range(20): #20 lines
    line = []
    means = range(1,9)
    for c in range(8): # 8 columns
        #Colum 1: mean 1; Column 2: mean 2.... values normally distributed s.d. = 0.5       
        line.append(normalvariate(means.pop(), 0.5))

    mt.append(line)

# once we have a matrix, transform it in an array
mt_array = array(mt)

# The R work
# Pass the array to 'mt' variable in R
r.assign("mt", mt_array)

# manipulate R via r('command')
r('print(mt)') #print the matrix 'mt' to check values

#The clustering process
#Calculating distances with 'dist'
#'dist' calculates distance among lines, so I am transposing (with t()) in order to have my columns clustered
## I guess 'dist' uses euclidian distance as default

r('mt_dist <- dist(t(mt))')
# hclust does the clustering with upgma as default

r('result = hclust(mt_dist)')

# directs the output to a determinde file
r('png("output_file.png")')

# plot the result
labels = ["sample A", "sample B","sample C", "sample D","sample E", "sample F", "sample G", "sample H"]
r.assign("labels", labels)
r('plot(result, labels=labels, main="My title")')

# 'close' you output
r('dev.off()')

1 个回答

1

这段话不是在回答你关于RPy_...异常的问题。它是针对你标题中的问题 我如何用Python创建一个非ASCII的树状图? 提供的答案。你可以试试这个方法来绘制 树状图

撰写回答