理解卡方特征选择的问题
我一直在搞不懂卡方特征选择。现在我有两个类别,正类和负类,每个类别里都有不同的词和词频。我需要用卡方特征选择来提取每个类别最具代表性的词。不过问题是,我得到的正类和负类的词完全一样。下面是我用来选择特征的Python代码:
#!/usr/bin/python
# import the necessary libraries
import math
class ChiFeatureSelector:
def __init__(self, extCorpus, lookupCorpus):
# store the extraction corpus and lookup corpus
self.extCorpus = extCorpus
self.lookupCorpus = lookupCorpus
def select(self, outPath):
# dictionary of chi-squared scores
scores = {}
# loop over the words in the extraction corpus
for w in self.extCorpus.getTerms():
# build the chi-squared table
n11 = float(self.extCorpus.getTermCount(w))
n10 = float(self.lookupCorpus.getTermCount(w))
n01 = float(self.extCorpus.getTotalDocs() - n11)
n00 = float(self.lookupCorpus.getTotalDocs() - n10)
# perform the chi-squared calculation and store
# the score in the dictionary
a = n11 + n10 + n01 + n00
b = ((n11 * n00) - (n10 * n01)) ** 2
c = (n11 + n01) * (n11 + n10) * (n10 + n00) * (n01 + n00)
chi = (a * b) / c
scores[w] = chi
# sort the scores in descending order
scores = sorted([(v, k) for (k, v) in scores.items()], reverse = True)
i = 0
for (v, k) in scores:
print str(k) + " : " + str(v)
i += 1
if i == 10:
break
这是我如何使用这个类的(为了简洁省略了一些代码,另外,我已经检查过这两个数据集里没有完全相同的数据)。
# perform positive ngram feature selection
print "positive:\n"
f = ChiFeatureSelector(posCorpus, negCorpus)
f.select(posOutputPath)
print "\nnegative:\n"
# perform negative ngram feature selection
f = ChiFeatureSelector(negCorpus, posCorpus)
f.select(negOutputPath)
我觉得问题可能出在我计算词/文档表的时候,但我不太确定。也许我对某些东西理解得不够透彻。有没有人能给我指个方向?
1 个回答
2
在两个类别的情况下,如果交换这两个数据集,特征的卡方排名是一样的。这些特征是两个类别之间差异最大的。