在Python中使用csv.DictReader进行数据类型转换的最快方法
我正在用Python处理一个CSV文件,使用时大约有10万行。每一行都有一组维度(以字符串形式表示)和一个数值(浮点数)。
因为csv.DictReader或csv.reader返回的值都是字符串,所以我现在需要遍历所有行,把那个唯一的数字值转换成浮点数。
for i in csvDict:
i[col] = float(i[col])
有没有人能建议更好的方法来做到这一点?我尝试过用map、izip、itertools等各种组合,并且搜索了很多更高效的做法,但遗憾的是没有太大成功。
如果有帮助的话: 我是在appengine上做这个。我认为我现在的做法可能导致我遇到这个错误: 在处理完11个请求后,超过了267.789 MB的软进程大小限制 - 只有在CSV文件比较大的时候才会出现这个问题。
编辑:我的目标 我正在解析这个CSV,以便将其用作Google可视化API的数据源。最终的数据集将被加载到一个gviz DataTable中以供查询。在构建这个表时必须指定类型。如果有人知道一个好的Python gviz csv到datatable的转换器,我的问题也能解决!
编辑2:我的代码
我认为我的问题与我尝试修复Csv类型的方式有关。此外,data_table.LoadData()需要一个可迭代的对象。
class GvizFromCsv(object):
"""Convert CSV to Gviz ready objects."""
def __init__(self, csvFile, dateTimeFormat=None):
self.fileObj = StringIO.StringIO(csvFile)
self.csvDict = list(csv.DictReader(self.fileObj))
self.dateTimeFormat = dateTimeFormat
self.headers = {}
self.ParseHeaders()
self.fixCsvTypes()
def IsNumber(self, st):
try:
float(st)
return True
except ValueError:
return False
def IsDate(self, st):
try:
datetime.datetime.strptime(st, self.dateTimeFormat)
except ValueError:
return False
def ParseHeaders(self):
"""Attempts to figure out header types for gviz, based on first row"""
for k, v in self.csvDict[0].items():
if self.IsNumber(v):
self.headers[k] = 'number'
elif self.dateTimeFormat and self.IsDate(v):
self.headers[k] = 'date'
else:
self.headers[k] = 'string'
def fixCsvTypes(self):
"""Only fixes numbers."""
update_to_numbers = []
for k,v in self.headers.items():
if v == 'number':
update_to_numbers.append(k)
for i in self.csvDict:
for col in update_to_numbers:
i[col] = float(i[col])
def CreateDataTable(self):
"""creates a gviz data table"""
data_table = gviz_api.DataTable(self.headers)
data_table.LoadData(self.csvDict)
return data_table
3 个回答
这里有两个不同的概念:
“数据源”和“数据表”。
“数据源”是指通过谷歌可视化API服务器提供的格式化数据,这是一种可视化的网络服务:
This page describes how you can implement a data source to feed data
to visualizations built on the Google Visualization API.
http://code.google.com/intl/fr/apis/visualization/documentation/dev/implementing_data_source.html
“数据源”这个名字还包含了“传输协议”的意思:
In response [to a request], the data source returns properly formatted data
that the visualization can use to render the graphic on the page.
This request-response protocol is known as the Google Visualization API wire protocol,
http://code.google.com/intl/fr/apis/visualization/documentation/dev/implementing_data_source_overview.html
要实现“数据源”,有两种可能的方法:
• Use one of the data source libraries listed in the Data Sources and Tools Gallery.
All the data source libraries listed on that page implement the wire protocol.
• Write your own data source from scratch,
http://code.google.com/intl/fr/apis/visualization/documentation/dev/implementing_data_source_overview.html
从以下内容来看:
• ... Data Sources and Tools Gallery : (....) You therefore need write only the
code needed to make your data available to the library in the form of a data table.
• Write your own data source from scratch, as described in the
Writing your own Data Source
我明白,从零开始,我们需要自己实现传输协议和创建“数据表”,而使用数据源库时,我们只需要创建“数据表”。
关于创建“数据源”的内容有很多页面。
http://code.google.com/intl/fr/apis/visualization/documentation/dev/gviz_api_lib.html
在我看来,地址为 http://groups.google.com/group/google-visualization-api/browse_thread/thread/9d1d941e0f0b32ed 的例子是关于创建“数据源”的,但那里的回答让我有些怀疑。不过我对此不是很清楚。
不过,这些页面和主题对你来说并不有趣,因为你其实想知道的是如何准备被称为“数据表”的数据,以便通过“数据源”提供,而不是构建“数据源”。
3.Prepare your data. You'll need to prepare the data to visualize;
this means either specifying the data yourself in code,
or querying a remote site for data.
http://code.google.com/intl/fr/apis/visualization/documentation/using_overview.html#keycomponents
A visualization stores the data that it visualizes as two-dimensional data table with
rows and columns.
Cells are referenced by (row, column) where row is a zero-based row number, and column
is either a zero-based column index or a unique ID that you can specify.
http://code.google.com/intl/fr/apis/visualization/documentation/using_overview.html#preparedata
所以,准备“数据表”是关键。
这里是:
There are two ways to create/populate your visualization's data table:
•Query a data provider. A data provider is another site that returns
a populated DataTable in response to a request from your code.
Some data providers also accept SQL-like query strings to sort or
filter the data. See Data Queries for more information and an example
of a query.
•Create and populate your own DataTable by hand. You can populate your
DataTable in code on your page. The simplest way to do this is to create
a DataTable object without any data and populate it by calling addRows()
on it. You can also pass a JavaScript literal representation of the data
table into the DataTable constructor, but this is more complex and is
covered on the reference page.
http://code.google.com/intl/fr/apis/visualization/documentation/using_overview.html#preparedata
更多信息可以在这里找到:
2. Describe your table schema
The table schema is specified by the table_description parameter
passed into the constructor. You cannot change it later.
The schema describes all the columns in the table: the data type of
each column, the ID, and an optional label.
Each column is described by a tuple: (ID [,data_type [,label [,custom_properties]]]).
The table schema is a collection of column descriptor tuples.
Every list member, dictionary key or dictionary value must be either
another collection or a descriptor tuple. You can use any combination
of dictionaries or lists, but every key, value, or member must
eventually evaluate to a descriptor tuple. Here are some examples.
•List of columns: [('a', 'number'), ('b', 'string')]
•Dictionary of lists: {('a', 'number'): [('b', 'number'), ('c', 'string')]}
•Dictionary of dictionaries: {('a', 'number'): {'b': 'number', 'c': 'string'}}
•And so on, with any level of nesting.
3. Populate your data
To add data to the table, build a structure of data elements in the
exact same structure as the table schema. So, for example, if your
schema is a list, the data must be a list:
•schema: [("color", "string"), ("shape", "string")]
•data: [["blue", "square"], ["red", "circle"]]
If the schema is a dictionary, the data must be a dictionary:
•schema: {("rowname", "string"): [("color", "string"), ("shape", "string")] }
•data: {"row1": ["blue", "square"], "row2": ["red", "circle"]}
http://code.google.com/intl/fr/apis/visualization/documentation/dev/gviz_api_lib.html#populatedata
最后,我想说,对于你的问题,你需要定义一个“表模式”,并处理你的CSV文件,以获得与表模式完全相同结构的数据元素。
列中数据类型的定义是在“表模式”的定义中完成的。如果填充“数据表”时必须使用正确类型的数据(我想说不是字符串),我可以帮助你写提取CSV数据的代码,这很简单。
希望这些内容都是正确的,并能对你有所帮助。
首先,如果你只是想展示这些数据,其实不需要做任何转换。gviz可以直接处理JSON(就是文本格式的)或者CSV(你已经有这个文件了,不需要解析!)。你只需把文件放在一个合适的网络服务器上,然后通过gviz发出的GET请求来访问它,基本上可以忽略请求中的参数。
但假设你需要处理这些数据。看起来你不仅是读取CSV文件,还想把它完全存储在内存中。这可能不太实际:随着你添加更多的处理,内存的限制会越来越快地到达。建议你一次处理一行数据(或者如果你使用窗口过滤等方法,可以处理合理数量的行),然后把处理好的数据存储到数据存储中,而不是放到任何列表里。当通过GET请求提供数据时,读取/处理一行数据,写入响应中,而不是放到任何列表或其他地方。
我觉得转换的方法没问题,只要你在后面的代码中合理使用i
,而不是在过程中记住所有的i
。
我最开始是用正则表达式来处理CSV文件,但因为文件里的数据每一行都排得很整齐,所以我们可以直接用split()函数。
import gviz_api
scheme = [('col1','string','SURNAME'),('col2','number','ONE'),('col3','number','TWO')]
data_table = gviz_api.DataTable(scheme)
# --- lines in surnames.csv are : ---
# surname,percent,cumulative percent,rank\n
# SMITH,1.006,1.006,1,\n
# JOHNSON,0.810,1.816,2,\n
# WILLIAMS,0.699,2.515,3,\n
with open('surnames.csv') as f:
def transf(surname,x,y):
return (surname,float(x),float(y))
f.readline()
# to skip the first line surname,percent,cumulative percent,rank\n
data_table.LoadData( transf(*line.split(',')[0:3]) for line in f )
# to populate the data table by iterating in the CSV file
或者也可以不定义函数:
import gviz_api
scheme = [('col1','string','SURNAME'),('col2','number','ONE'),('col3','number','TWO')]
data_table = gviz_api.DataTable(scheme)
# --- lines in surnames.csv are : ---
# surname,percent,cumulative percent,rank\n
# SMITH,1.006,1.006,1,\n
# JOHNSON,0.810,1.816,2,\n
# WILLIAMS,0.699,2.515,3,\n
with open('surnames.csv') as f:
f.readline()
# to skip the first line surname,percent,cumulative percent,rank\n
datdata_table.LoadData( [el if n==0 else float(el) for n,el in enumerate(line.split(',')[0:3])] for line in f )
# to populate the data table by iterating in the CSV file
有一段时间,我以为我必须一行一行地填充数据表,因为我在用正则表达式,这样需要先获取匹配的组,然后再处理数字的字符串。不过用split()的话,就可以用LoadData()一条指令搞定。
.
所以,你的代码可以简化一下。顺便说一下,我觉得没必要继续定义一个类。对我来说,定义一个函数就足够了:
def GvizFromCsv(filename):
""" creates a gviz data table from a CSV file """
data_table = gviz_api.DataTable([('col1','string','SURNAME'),
('col2','number','ONE' ),
('col3','number','TWO' ) ])
# --- with such a table schema , lines in the file must be like that: ---
# blah, number, number, ...anything else...\n
# SMITH,1.006,1.006, ...anything else...\n
# JOHNSON,0.810,1.816, ...anything else...\n
# WILLIAMS,0.699,2.515, ...anything else...\n
with open(filename) as f:
data_table.LoadData( [el if n==0 else float(el) for n,el in enumerate(line.split(',')[0:3])]
for line in f )
return data_table
.
现在你需要检查一下,如何从另一个API读取CSV数据,并把它插入到这个代码里,以保持填充数据表的循环原则。