如何使用Numpy求解化学方程得到整数答案
我被要求写一段Python代码,用来解决一个化学方程式,使用的是阶梯矩阵的方法,课程是代数。整体上没问题,但我希望最后的结果是整数,我不知道该怎么做。在我的solve_equation函数里,我把自由变量设为1,这样我就可以根据这个值计算其他变量。我不知道还能做些什么,因为我对Python不太熟悉,而且刚开始学习编程。这是我目前的函数(它接收简化后的阶梯矩阵作为输入,并返回系数):
def solve_equation(matrix):
m, n = matrix.shape
solution = {}
# Iterate over each row to find the pivot variable and calculate its value
for i in range(m):
pivot_column = np.argmax(matrix[i, :-1])
if matrix[i, pivot_column] == 0:
continue # Skip trivial equations
variable_index = pivot_column
variable_value = matrix[i, -1] / matrix[i, pivot_column]
if(variable_value < 0):
variable_value *= -1
solution[f'X{variable_index + 1}'] = variable_value
# Handle free variables
for j in range(n - 1):
if f'X{j + 1}' not in solution:
# Assign a value of 1 to free variables
solution[f'X{j + 1}'] = 1
free_var_index = j
# Iterate through the matrix to adjust values of basic variables
for i in range(m):
if i != free_var_index:
coefficient = matrix[i, free_var_index]
if coefficient < 0 :
coefficient *= -1
solution[f'X{i + 1}'] += coefficient * solution[f'X{j + 1}']
return solution
我觉得我应该根据简化阶梯矩阵中的系数来改变自由变量的输入。
1 个回答
0
我找到的答案(在ChatGPT和另一个问题的帮助下):
def solve_equation(matrix):
m, n = matrix.shape
solution = {}
coeffs = {}
# Iterate over each row to find the pivot variable and calculate its value
for i in range(m):
pivot_column = np.argmax(matrix[i, :-1])
if matrix[i, pivot_column] == 0:
continue # Skip trivial equations
variable_index = pivot_column
variable_value = matrix[i, -1] / matrix[i, pivot_column]
solution[f'X{variable_index + 1}'] = variable_value
# finding the free variables
for j in range(n - 1):
if f'X{j + 1}' not in solution:
# here I am assiging 1 to the free variable so that I can calculate others based on it
solution[f'X{j + 1}'] = 1
free_var_index = j
# Iterate through the matrix to adjust values of basic variables
for i in range(m):
if i != free_var_index:
coefficient = matrix[i, free_var_index]
solution[f'X{i + 1}'] += coefficient * solution[f'X{j + 1}']
# I wanted to have integer answers in the end so here we convert numbers to integer by claculating the LCM
for var, value in solution.items():
if var.startswith('X'):
coeffs[var] = value
fractions = [Fraction(val).limit_denominator(MAX_DENOM) for val in coeffs.values()]
ratios = np.array([(f.numerator, f.denominator) for f in fractions])
factor = np.lcm.reduce(ratios[:,1])
for var, value in solution.items():
if var.startswith('X'):
solution[var] *= factor
return solution