Python中的Excel求解器
我想在Python中实现类似这样的功能:
http://office.microsoft.com/en-us/excel-help/using-solver-to-rate-sports-teams-HA001124601.aspx
但是我不想使用Excel的求解器,只想用Python的库来完成。
有没有人能告诉我应该使用哪些库,以及一些入门教程,让我可以开始学习?
4 个回答
3
PuLP 是一个用 Python 编写的线性规划建模工具。它能做的事情和 Excel 的求解器一样多。
PuLP 是一个免费的开源软件,使用 Python 编写。它用于将优化问题描述为数学模型。然后,PuLP 可以调用许多外部的线性规划求解器(比如 CBC、GLPK、CPLEX、Gurobi 等)来解决这个模型,并使用 Python 命令来处理和展示解决方案。
这里有一个关于 PuLP 的 详细介绍,以及如何在 Python 中使用 PuLP 建模优化问题的手册。
建模示例
# Import PuLP modeler functions
from pulp import *
# Create the 'prob' variable to contain the problem data
prob = LpProblem("Example_Problem", LpMinimize)
# Declare decision variables
var_x = LpVariable(name="x", lowBound=0, cat="Continuous")
var_y = LpVariable(name="y", cat="Integer")
# The objective function is added to 'prob' first
prob += var_x + 2 * var_y
# The constraints are added to 'prob'
prob += var_x == (-1) * var_y
prob += var_x <= 15
prob += var_x > 0
# The problem is solved using PuLP's choice of Solver
prob.solve()
# The status of the solution is printed to the screen
print("Status:", LpStatus[prob.status])
# Each of the variables is printed with it's resolved optimum value
for v in prob.variables():
print(v.name, "=", v.varValue)
4
这个页面列出了一些你可以在Python中使用的求解器库:
30
你在寻找NumPy(用于处理矩阵和进行数字运算)和SciPy(用于优化)。
如果你想入门,可以看看这个链接:https://stackoverflow.com/questions/4375094/numpy-learning-resources
我按照给出的例子做了以下步骤:
- 我在OpenOffice中打开了示例Excel文件
- 我把团队数据(不包括标题)复制到一个新表格中,并保存为teams.csv
- 我把比赛数据(不包括标题)复制到另一个新表格中,并保存为games.csv
然后在Python中:
import csv
import numpy
import scipy.optimize
def readCsvFile(fname):
with open(fname, 'r') as inf:
return list(csv.reader(inf))
# Get team data
team = readCsvFile('teams.csv') # list of num,name
numTeams = len(team)
# Get game data
game = readCsvFile('games.csv') # list of game,home,away,homescore,awayscore
numGames = len(game)
# Now, we have the NFL teams for 2002 and data on all games played.
# From this, we wish to forecast the score of future games.
# We are going to assume that each team has an inherent performance-factor,
# and that there is a bonus for home-field advantage; then the
# relative final score between a home team and an away team can be
# calculated as (home advantage) + (home team factor) - (away team factor)
# First we create a matrix M which will hold the data on
# who played whom in each game and who had home-field advantage.
m_rows = numTeams + 1
m_cols = numGames
M = numpy.zeros( (m_rows, m_cols) )
# Then we create a vector S which will hold the final
# relative scores for each game.
s_cols = numGames
S = numpy.zeros(s_cols)
# Loading M and S with game data
for col,gamedata in enumerate(game):
gameNum,home,away,homescore,awayscore = gamedata
# In the csv data, teams are numbered starting at 1
# So we let home-team advantage be 'team 0' in our matrix
M[0, col] = 1.0 # home team advantage
M[int(home), col] = 1.0
M[int(away), col] = -1.0
S[col] = int(homescore) - int(awayscore)
# Now, if our theoretical model is correct, we should be able
# to find a performance-factor vector W such that W*M == S
#
# In the real world, we will never find a perfect match,
# so what we are looking for instead is W which results in S'
# such that the least-mean-squares difference between S and S'
# is minimized.
# Initial guess at team weightings:
# 2.0 points home-team advantage, and all teams equally strong
init_W = numpy.array([2.0]+[0.0]*numTeams)
def errorfn(w,m,s):
return w.dot(m) - s
W = scipy.optimize.leastsq(errorfn, init_W, args=(M,S))
homeAdvantage = W[0][0] # 2.2460937500005356
teamStrength = W[0][1:] # numpy.array([-151.31111318, -136.36319652, ... ])
# Team strengths have meaning only by linear comparison;
# we can add or subtract any constant to all of them without
# changing the meaning.
# To make them easier to understand, we want to shift them
# such that the average is 0.0
teamStrength -= teamStrength.mean()
for t,s in zip(team,teamStrength):
print "{0:>10}: {1: .7}".format(t[1],s)
得到的结果是
Ari: -9.8897569
Atl: 5.0581597
Balt: -2.1178819
Buff: -0.27413194
Carolina: -3.2720486
Chic: -5.2654514
Cinn: -10.503646
Clev: 1.2338542
Dall: -8.4779514
Den: 4.8901042
Det: -9.1727431
GB: 3.5800347
Hous: -9.4390625
Indy: 1.1689236
Jack: -0.2015625
KC: 6.1112847
Miami: 6.0588542
Minn: -3.0092014
NE: 4.0262153
NO: 2.4251736
NYG: 0.82725694
NYJ: 3.1689236
Oak: 10.635243
Phil: 8.2987847
Pitt: 2.6994792
St. Louis: -3.3352431
San Diego: -0.72065972
SF: 0.63524306
Seattle: -1.2512153
Tampa: 8.8019097
Tenn: 1.7640625
Wash: -4.4529514
这个结果和电子表格中显示的是一样的。