使用scipy、python和numpy进行非线性e^(-x)回归
下面的代码让我得到了一条平坦的线,而不是一个像e^(-x)那样的漂亮曲线来适应我的数据。有没有人能告诉我怎么修改下面的代码,让它能更好地拟合我的数据呢?
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize
def _eNegX_(p,x):
x0,y0,c,k=p
y = (c * np.exp(-k*(x-x0))) + y0
return y
def _eNegX_residuals(p,x,y):
return y - _eNegX_(p,x)
def Get_eNegX_Coefficients(x,y):
print 'x is: ',x
print 'y is: ',y
# Calculate p_guess for the vectors x,y. Note that p_guess is the
# starting estimate for the minimization.
p_guess=(np.median(x),np.min(y),np.max(y),.01)
# Calls the leastsq() function, which calls the residuals function with an initial
# guess for the parameters and with the x and y vectors. Note that the residuals
# function also calls the _eNegX_ function. This will return the parameters p that
# minimize the least squares error of the _eNegX_ function with respect to the original
# x and y coordinate vectors that are sent to it.
p, cov, infodict, mesg, ier = scipy.optimize.leastsq(
_eNegX_residuals,p_guess,args=(x,y),full_output=1,warning=True)
# Define the optimal values for each element of p that were returned by the leastsq() function.
x0,y0,c,k=p
print('''Reference data:\
x0 = {x0}
y0 = {y0}
c = {c}
k = {k}
'''.format(x0=x0,y0=y0,c=c,k=k))
print 'x.min() is: ',x.min()
print 'x.max() is: ',x.max()
# Create a numpy array of x-values
numPoints = np.floor((x.max()-x.min())*100)
xp = np.linspace(x.min(), x.max(), numPoints)
print 'numPoints is: ',numPoints
print 'xp is: ',xp
print 'p is: ',p
pxp=_eNegX_(p,xp)
print 'pxp is: ',pxp
# Plot the results
plt.plot(x, y, '>', xp, pxp, 'g-')
plt.xlabel('BPM%Rest')
plt.ylabel('LVET/BPM',rotation='vertical')
plt.xlim(0,3)
plt.ylim(0,4)
plt.grid(True)
plt.show()
return p
# Declare raw data for use in creating regression equation
x = np.array([1,1.425,1.736,2.178,2.518],dtype='float')
y = np.array([3.489,2.256,1.640,1.043,0.853],dtype='float')
p=Get_eNegX_Coefficients(x,y)
1 个回答
11
看起来你遇到的问题是出在你最开始的猜测上;像(1, 1, 1, 1)这样的初始值就能很好地工作:
你有
p_guess=(np.median(x),np.min(y),np.max(y),.01)
对于这个函数
def _eNegX_(p,x):
x0,y0,c,k=p
y = (c * np.exp(-k*(x-x0))) + y0
return y
所以这是 test_data_maxe^( -.01(x - test_data_median)) + test_data_min
我对选择好的起始参数不是很了解,但我可以说一些事情。leastsq
在这里找到的是一个局部最小值——选择这些值的关键是找到正确的“山”去攀登,而不是试图减少最小化算法需要做的工作。你的初始猜测看起来像这样(绿色
):
(1.736, 0.85299999999999998, 3.4889999999999999, 0.01)
这导致了你得到的平坦线(蓝色):
(-59.20295956, 1.8562 , 1.03477144, 0.69483784)
调整线的高度比增加k值带来的效果更大。如果你知道自己是在拟合这种数据,使用一个更大的k值。如果你不确定,我想你可以通过抽样你的数据来找到一个合适的k值,或者从前半部分和后半部分的平均斜率反推,但我不知道该怎么做。
补充:你也可以尝试多个初始猜测,运行几次最小化,然后选择残差最小的那条线。