从音频文件中检测频率
我想要实现的目标是:我需要一个声音文件(.wav)的频率值来进行分析。我知道很多程序会给出一个可视化的图表(频谱图),但我需要的是原始数据。我知道这可以通过快速傅里叶变换(FFT)来完成,并且在Python中应该比较容易写出来,但我不太确定具体该怎么做。
假设文件中的信号长度是0.4秒,那么我希望能得到多个测量值,输出为一个数组,显示程序在每个测量时刻找到的频率值(可能还包括功率(分贝))。复杂的地方在于,我想分析鸟鸣声,而鸟鸣声通常会有谐波,或者信号覆盖一个频率范围(例如1000-2000赫兹)。我希望程序也能输出这些信息,因为这对我想进行的数据分析非常重要 :)
现在有一段代码看起来很符合我的需求,但我觉得它没有给我所有我想要的值……(感谢Justin Peel在另一个问题中发布了这段代码 :)) 所以我了解到我需要用到numpy和pyaudio,但不幸的是我对Python不太熟悉,所以希望有Python专家能帮我解决这个问题?
源代码:
# Read in a WAV and find the freq's
import pyaudio
import wave
import numpy as np
chunk = 2048
# open up a wave
wf = wave.open('test-tones/440hz.wav', 'rb')
swidth = wf.getsampwidth()
RATE = wf.getframerate()
# use a Blackman window
window = np.blackman(chunk)
# open stream
p = pyaudio.PyAudio()
stream = p.open(format =
p.get_format_from_width(wf.getsampwidth()),
channels = wf.getnchannels(),
rate = RATE,
output = True)
# read some data
data = wf.readframes(chunk)
# play stream and find the frequency of each chunk
while len(data) == chunk*swidth:
# write data out to the audio stream
stream.write(data)
# unpack the data and times by the hamming window
indata = np.array(wave.struct.unpack("%dh"%(len(data)/swidth),\
data))*window
# Take the fft and square each value
fftData=abs(np.fft.rfft(indata))**2
# find the maximum
which = fftData[1:].argmax() + 1
# use quadratic interpolation around the max
if which != len(fftData)-1:
y0,y1,y2 = np.log(fftData[which-1:which+2:])
x1 = (y2 - y0) * .5 / (2 * y1 - y2 - y0)
# find the frequency and output it
thefreq = (which+x1)*RATE/chunk
print "The freq is %f Hz." % (thefreq)
else:
thefreq = which*RATE/chunk
print "The freq is %f Hz." % (thefreq)
# read some more data
data = wf.readframes(chunk)
if data:
stream.write(data)
stream.close()
p.terminate()
2 个回答
8
我不太确定这是不是你想要的,如果你只是想要快速傅里叶变换(FFT):
import scikits.audiolab, scipy
x, fs, nbits = scikits.audiolab.wavread(filename)
X = scipy.fft(x)
如果你想要幅度响应:
import pylab
Xdb = 20*scipy.log10(scipy.absolute(X))
f = scipy.linspace(0, fs, len(Xdb))
pylab.plot(f, Xdb)
pylab.show()