是否可以将递归计算的NumPy数组向量化,其中每个元素依赖于前一个元素?
T(i) = Tm(i) + (T(i-1)-Tm(i))**(-tau(i))
Tm
和tau
是两个长度相同的NumPy向量,这两个向量之前已经计算过。现在我们想要创建一个新的向量T
。这里的i
只是用来表示我们想要的元素的索引。
在这种情况下,是否需要使用for循环呢?
5 个回答
更新:2018年10月21日
根据评论,我对我的回答进行了修正。
只要计算不是递归的,就可以对向量进行向量化操作。因为递归操作依赖于之前计算的值,所以无法并行处理这种操作。
因此,这种方法是行不通的:
def calc_vect(Tm_, tau_):
return Tm_[1:] - (Tm_[:-1] + Tm_[1:]) ** (-tau_[1:])
由于需要进行串行处理(也就是循环),所以要想获得最佳性能,就必须尽量接近优化后的机器代码,因此Numba和Cython是这里最好的选择。
使用Numba的方法可以这样实现:
init_string = """
from math import pow
import numpy as np
from numba import jit, float32
np.random.seed(0)
n = 100000
Tm = np.cumsum(np.random.uniform(0.1, 1, size=n).astype('float32'))
tau = np.random.uniform(-1, 0, size=n).astype('float32')
def calc_python(Tm_, tau_):
tt = np.empty(len(Tm_))
tt[0] = Tm_[0]
for i in range(1, len(Tm_)):
tt[i] = Tm_[i] - pow(tt[i-1] + Tm_[i], -tau_[i])
return tt
@jit(float32[:](float32[:], float32[:]), nopython=False, nogil=True)
def calc_numba(Tm_, tau_):
tt = np.empty(len(Tm_))
tt[0] = Tm_[0]
for i in range(1, len(Tm_)):
tt[i] = Tm_[i] - pow(tt[i-1] + Tm_[i], -tau_[i])
return tt
"""
import timeit
py_time = timeit.timeit('calc_python(Tm, tau)', init_string, number=100)
numba_time = timeit.timeit('calc_numba(Tm, tau)', init_string, number=100)
print("Python Solution: {}".format(py_time))
print("Numba Soltution: {}".format(numba_time))
下面是Python和Numba函数的时间对比:
Python Solution: 54.58057559299999
Numba Soltution: 1.1389029540000024
2019年更新。 新版本的Numba导致之前的代码出现问题。将dtype="float32"
改为dtype=np.float32
就解决了这个问题。
我做了一些基准测试,结果显示在2019年,使用Numba是加速Numpy中递归函数的首选方案(这是对Aronstef提议的调整)。Numba已经在Anaconda包中预装,并且运行速度非常快(大约比任何Python快20倍)。在2019年,Python支持@numba注解,不需要额外的步骤(至少在3.6、3.7和3.8版本中是这样)。以下是三组基准测试:分别在2019年12月5日、2018年10月20日和2016年5月18日进行。
正如Jaffe提到的,在2018年,递归函数仍然无法向量化。我检查了Aronstef的向量化方法,发现它并不奏效。
基准测试按执行时间排序:
-------------------------------------------
|Variant |2019-12 |2018-10 |2016-05 |
-------------------------------------------
|Pure C | na | na | 2.75 ms|
|C extension | na | na | 6.22 ms|
|Cython float32 | 0.55 ms| 1.01 ms| na |
|Cython float64 | 0.54 ms| 1.05 ms| 6.26 ms|
|Fortran f2py | 4.65 ms| na | 6.78 ms|
|Numba float32 |73.0 ms| 2.81 ms| na |
|(Aronstef) | | | |
|Numba float32v2| 1.82 ms| 2.81 ms| na |
|Numba float64 |78.9 ms| 5.28 ms| na |
|Numba float64v2| 4.49 ms| 5.28 ms| na |
|Append to list |73.3 ms|48.2 ms|91.0 ms|
|Using a.item() |36.9 ms|58.3 ms|74.4 ms|
|np.fromiter() |60.8 ms|60.0 ms|78.1 ms|
|Loop over Numpy|71.3 ms|71.9 ms|87.9 ms|
|(Jaffe) | | | |
|Loop over Numpy|74.6 ms|74.4 ms| na |
|(Aronstef) | | | |
-------------------------------------------
相应的代码在答案的最后提供。
随着时间的推移,Numba和Cython的运行时间都在改善。现在它们的速度都比Fortran的f2py快。Cython现在快8.6倍,而32位的Numba快2.5倍。2016年,Fortran的调试和编译非常困难。所以现在根本没有理由使用Fortran。
我在2019年没有检查纯C和C扩展,因为在Jupyter笔记本中编译它们并不容易。
我在2019年的设置如下:
Processor: Intel i5-9600K 3.70GHz
Versions:
Python: 3.8.0
Numba: 0.46.0
Cython: 0.29.14
Numpy: 1.17.4
我在2018年的设置如下:
Processor: Intel i7-7500U 2.7GHz
Versions:
Python: 3.7.0
Numba: 0.39.0
Cython: 0.28.5
Numpy: 1.15.1
推荐的Numba代码使用float32(调整自Aronstef):
@numba.jit("float32[:](float32[:], float32[:])", nopython=True, nogil=True)
def calc_py_jit32v2(Tm_, tau_):
tt = np.empty(len(Tm_),dtype=np.float32)
tt[0] = Tm_[0]
for i in range(1, len(Tm_)):
tt[i] = Tm_[i] - (tt[i-1] + Tm_[i])**(-tau_[i])
return tt[1:]
其他所有代码:
数据创建(类似于Aronstef + Mike T的评论):
np.random.seed(0)
n = 100000
Tm = np.cumsum(np.random.uniform(0.1, 1, size=n).astype('float64'))
tau = np.random.uniform(-1, 0, size=n).astype('float64')
ar = np.column_stack([Tm,tau])
Tm32 = Tm.astype('float32')
tau32 = tau.astype('float32')
Tm_l = list(Tm)
tau_l = list(tau)
2016年的代码稍有不同,因为我使用了abs()函数来防止出现nans,而不是Mike T的变体。在2018年,这个函数与原作者(OP)写的一模一样。
Cython float32使用Jupyter的%%魔法。这个函数可以直接在Python
中使用。Cython需要一个与Python编译时使用的C++编译器。安装正确版本的Visual C++编译器(对于Windows)可能会有些麻烦:
%%cython
import cython
import numpy as np
cimport numpy as np
from numpy cimport ndarray
cdef extern from "math.h":
np.float32_t exp(np.float32_t m)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.infer_types(True)
@cython.initializedcheck(False)
def cy_loop32(np.float32_t[:] Tm,np.float32_t[:] tau,int alen):
cdef np.float32_t[:] T=np.empty(alen, dtype=np.float32)
cdef int i
T[0]=0.0
for i in range(1,alen):
T[i] = Tm[i] + (T[i-1] - Tm[i])**(-tau[i])
return T
Cython float64使用Jupyter的%%魔法。这个函数可以直接在Python
中使用:
%%cython
cdef extern from "math.h":
double exp(double m)
import cython
import numpy as np
cimport numpy as np
from numpy cimport ndarray
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.infer_types(True)
@cython.initializedcheck(False)
def cy_loop(double[:] Tm,double[:] tau,int alen):
cdef double[:] T=np.empty(alen)
cdef int i
T[0]=0.0
for i in range(1,alen):
T[i] = Tm[i] + (T[i-1] - Tm[i])**(-tau[i])
return T
Numba float64:
@numba.jit("float64[:](float64[:], float64[:])", nopython=False, nogil=True)
def calc_py_jitv2(Tm_, tau_):
tt = np.empty(len(Tm_),dtype=np.float64)
tt[0] = Tm_[0]
for i in range(1, len(Tm_)):
tt[i] = Tm_[i] - (tt[i-1] + Tm_[i])**(-tau_[i])
return tt[1:]
添加到列表。最快的非编译解决方案:
def rec_py_loop(Tm,tau,alen):
T = [Tm[0]]
for i in range(1,alen):
T.append(Tm[i] - (T[i-1] + Tm[i])**(-tau[i]))
return np.array(T)
使用a.item():
def rec_numpy_loop_item(Tm_,tau_):
n_ = len(Tm_)
tt=np.empty(n_)
Ti=tt.item
Tis=tt.itemset
Tmi=Tm_.item
taui=tau_.item
Tis(0,Tm_[0])
for i in range(1,n_):
Tis(i,Tmi(i) - (Ti(i-1) + Tmi(i))**(-taui(i)))
return tt[1:]
np.fromiter():
def it(Tm,tau):
T=Tm[0]
i=0
while True:
yield T
i+=1
T=Tm[i] - (T + Tm[i])**(-tau[i])
def rec_numpy_iter(Tm,tau,alen):
return np.fromiter(it(Tm,tau), np.float64, alen)[1:]
在Numpy中循环(基于Jaffe的想法):
def rec_numpy_loop(Tm,tau,alen):
tt=np.empty(alen)
tt[0]=Tm[0]
for i in range(1,alen):
tt[i] = Tm[i] - (tt[i-1] + Tm[i])**(-tau[i])
return tt[1:]
在Numpy中循环(Aronstef的代码)。 在我的电脑上,float64
是np.empty
的默认类型。
def calc_py(Tm_, tau_):
tt = np.empty(len(Tm_),dtype="float64")
tt[0] = Tm_[0]
for i in range(1, len(Tm_)):
tt[i] = (Tm_[i] - (tt[i-1] + Tm_[i])**(-tau_[i]))
return tt[1:]
纯C完全不使用Python
。2016年的版本(使用fabs()函数):
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <windows.h>
#include <sys\timeb.h>
double randn() {
double u = rand();
if (u > 0.5) {
return sqrt(-1.57079632679*log(1.0 - pow(2.0 * u - 1, 2)));
}
else {
return -sqrt(-1.57079632679*log(1.0 - pow(1 - 2.0 * u,2)));
}
}
void rec_pure_c(double *Tm, double *tau, int alen, double *T)
{
for (int i = 1; i < alen; i++)
{
T[i] = Tm[i] + pow(fabs(T[i - 1] - Tm[i]), (-tau[i]));
}
}
int main() {
int N = 100000;
double *Tm= calloc(N, sizeof *Tm);
double *tau = calloc(N, sizeof *tau);
double *T = calloc(N, sizeof *T);
double time = 0;
double sumtime = 0;
for (int i = 0; i < N; i++)
{
Tm[i] = randn();
tau[i] = randn();
}
LARGE_INTEGER StartingTime, EndingTime, ElapsedMicroseconds;
LARGE_INTEGER Frequency;
for (int j = 0; j < 1000; j++)
{
for (int i = 0; i < 3; i++)
{
QueryPerformanceFrequency(&Frequency);
QueryPerformanceCounter(&StartingTime);
rec_pure_c(Tm, tau, N, T);
QueryPerformanceCounter(&EndingTime);
ElapsedMicroseconds.QuadPart = EndingTime.QuadPart - StartingTime.QuadPart;
ElapsedMicroseconds.QuadPart *= 1000000;
ElapsedMicroseconds.QuadPart /= Frequency.QuadPart;
if (i == 0)
time = (double)ElapsedMicroseconds.QuadPart / 1000;
else {
if (time > (double)ElapsedMicroseconds.QuadPart / 1000)
time = (double)ElapsedMicroseconds.QuadPart / 1000;
}
}
sumtime += time;
}
printf("1000 loops,best of 3: %.3f ms per loop\n",sumtime/1000);
free(Tm);
free(tau);
free(T);
}
Fortran f2py。 这个函数可以从Python
中使用。2016年的版本(使用abs()函数):
subroutine rec_fortran(tm,tau,alen,result)
integer*8, intent(in) :: alen
real*8, dimension(alen), intent(in) :: tm
real*8, dimension(alen), intent(in) :: tau
real*8, dimension(alen) :: res
real*8, dimension(alen), intent(out) :: result
res(1)=0
do i=2,alen
res(i) = tm(i) + (abs(res(i-1) - tm(i)))**(-tau(i))
end do
result=res
end subroutine rec_fortran
你可能会觉得这样做是可以的:
import numpy as np
n = len(Tm)
t = np.empty(n)
t[0] = 0 # or whatever the initial condition is
t[1:] = Tm[1:] + (t[0:n-1] - Tm[1:])**(-tau[1:])
但实际上并不行:你不能用这种方式在numpy中进行递归(因为numpy会先计算右边的所有内容,然后再把结果赋值给左边)。
所以,除非你能想出这个公式的非递归版本,否则你只能使用一个明确的循环:
tt = np.empty(n)
tt[0] = 0.
for i in range(1,n):
tt[i] = Tm[i] + (tt[i-1] - Tm[i])**(-tau[i])