roc_auc_score在RandomForestClassifier的GridSearchCV与显式编码的RandomForestClassifier之间不同

0 投票
1 回答
54 浏览
提问于 2025-04-13 15:25

为什么一个用特定参数训练出来的 RandomForestClassifier 的表现,和用 GridSearchCV 调整参数后的表现不一样呢?

def random_forest(X_train, y_train):
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.metrics import roc_auc_score, make_scorer
    from sklearn.model_selection import train_test_split
    
    X_train, X_validate, y_train, y_validate = train_test_split(X_train, y_train, random_state=0)
    
    # various combinations of max depth and max features
    max_depth_vals = [1,2,3]
    max_features_vals = [2,3,4]
    grid_values = {'max_depth': max_depth_vals, 'max_features': max_features_vals}
    
    # build GridSearch
    clf = RandomForestClassifier(n_estimators=10)
    grid = GridSearchCV(clf, param_grid=grid_values, cv=3, scoring='roc_auc')
    grid.fit(X_train, y_train)
    y_hat_proba = grid.predict_proba(X_validate)
    print('Train Grid best parameter (max. AUC): ', grid.best_params_)
    print('Train Grid best score (AUC): ', grid.best_score_)
    print('Validation set AUC: ', roc_auc_score(y_validate, y_hat_proba[:,1]))

    
    # build RandomForest with hard coded values. AUC should be ballpark to grid search
    clf = RandomForestClassifier(max_depth=3, max_features=4, n_estimators=10)
    clf.fit(X_train, y_train)
    y_hat = clf.predict(X_validate)
    y_hat_prob = clf.predict_proba(X_validate)[:, 1]
    
    auc = roc_auc_score(y_hat, y_hat_prob)
    
    print("\nMax Depth: 3 Max Features: 4\n---------------------------------------------")
    print("auc: {}".format(auc))
    return

结果显示,网格搜索找到了最佳参数 max_depth=3max_features=4,并计算出一个 roc_auc_score0.85;但是当我用保留的验证集来测试时,得到的 roc_auc_score0.84。然而,当我直接用这些参数来编写分类器时,计算出的 roc_auc_score 却是 1.0。我以为结果应该差不多在 0.85 左右,但感觉差得太远了。

Validation set AUC:  0.8490471073563559
Grid best parameter (max. AUC):  {'max_depth': 3, 'max_features': 4}
Grid best score (AUC):  0.8599727094965482

Max Depth: 3 Max Features: 4
---------------------------------------------
auc: 1.0

我可能对某些概念理解错了,或者没有正确应用技术,甚至可能有编码方面的问题。谢谢。

1 个回答

1

这里有两个问题:

可变性

为了得到可重复的结果,尽量在可能的地方指定种子或随机状态,比如:

RandomForestClassifier(n_estimators=10, random_state=1234)

cv = StratifiedKFold(n_splits=3, random_state=1234)
GridSearchCV(clf, param_grid=grid_values, cv=cv, scoring='roc_auc')

ROC-AUC计算的参数

你使用了估计的标签,而不是实际的标签:

auc = roc_auc_score(y_hat, y_hat_prob)

请使用实际的标签:

auc = roc_auc_score(y_validate, y_hat_prob)

撰写回答