如何轻松转换SQLAlchemy列类型和Python数据类型?
我想找一种简单的方法,用Python来比较SQLAlchemy中的列类型和基本类型。比如说,如果我的列类型是任意长度的VARCHAR,我希望把它当作字符串来处理。
我能读取列的类型,但不太确定怎么简单地验证它的基本类型……如果我能用类似“if isinstance(mycolumn, int)”这样的方式就好了,但我对Python还不太熟悉,不知道该怎么做。
这是我目前的代码:
from sqlalchemy import MetaData
from sqlalchemy import create_engine, Column, Table
engine = create_engine('mysql+mysqldb://user:pass@localhost:3306/mydb', pool_recycle=3600)
meta = MetaData()
meta.bind = engine
meta.reflect()
datatable = meta.tables['my_data_table']
[c.type for c in datatable.columns]
输出结果:
[INTEGER(display_width=11), DATE(), VARCHAR(length=127), DOUBLE(precision=None, scale=None, asdecimal=True)]
我这样做的目的有两个,首先是因为我想在把数据加载到我的jQuery jqGrid时,根据类型来格式化输出。其次,我正在慢慢把非规范化的数据表转换成规范化的结构,想确保我的数据类型保持一致——(也就是确保之前表格中的数字是以数字的形式存储,而不是字符串……)
4 个回答
14
Python类型与SQL类型的对应关系:
我在创建SQL表时遇到了一些麻烦,特别是需要动态生成默认的SQL类型。最后,我写了一些方便的函数,解决了Python类型和SQL类型之间的转换问题。将SQL类型转换为Python类型很简单,下一节会详细说明。
import sqlalchemy
import numpy as np
import datetime
import decimal
_type_py2sql_dict = {
int: sqlalchemy.sql.sqltypes.BigInteger,
str: sqlalchemy.sql.sqltypes.Unicode,
float: sqlalchemy.sql.sqltypes.Float,
decimal.Decimal: sqlalchemy.sql.sqltypes.Numeric,
datetime.datetime: sqlalchemy.sql.sqltypes.DateTime,
bytes: sqlalchemy.sql.sqltypes.LargeBinary,
bool: sqlalchemy.sql.sqltypes.Boolean,
datetime.date: sqlalchemy.sql.sqltypes.Date,
datetime.time: sqlalchemy.sql.sqltypes.Time,
datetime.timedelta: sqlalchemy.sql.sqltypes.Interval,
list: sqlalchemy.sql.sqltypes.ARRAY,
dict: sqlalchemy.sql.sqltypes.JSON
}
def type_py2sql(pytype):
'''Return the closest sql type for a given python type'''
if pytype in _type_py2sql_dict:
return _type_py2sql_dict[pytype]
else:
raise NotImplementedError(
"You may add custom `sqltype` to `"+str(pytype)+"` assignment in `_type_py2sql_dict`.")
def type_np2py(dtype=None, arr=None):
'''Return the closest python type for a given numpy dtype'''
if ((dtype is None and arr is None) or
(dtype is not None and arr is not None)):
raise ValueError(
"Provide either keyword argument `dtype` or `arr`: a numpy dtype or a numpy array.")
if dtype is None:
dtype = arr.dtype
#1) Make a single-entry numpy array of the same dtype
#2) force the array into a python 'object' dtype
#3) the array entry should now be the closest python type
single_entry = np.empty([1], dtype=dtype).astype(object)
return type(single_entry[0])
def type_np2sql(dtype=None, arr=None):
'''Return the closest sql type for a given numpy dtype'''
return type_py2sql(type_np2py(dtype=dtype, arr=arr))
一些使用场景:
>>> sqlalchemy.Column(type_py2sql(int))
Column(None, BigInteger(), table=None)
>>> type_py2sql(type('hello'))
sqlalchemy.sql.sqltypes.Unicode
>>> type_np2sql(arr=np.array([1.,2.,3.]))
sqlalchemy.sql.sqltypes.Float
我如何选择我的转换集合:
我做的就是把所有的SQL类型和它们对应的Python类型一一对应起来。然后我打印出每种Python类型对应哪些SQL类型,并为每种Python类型选择了最合适的SQL类型。下面是我用来生成这个对应关系的代码:
#********** SQL to Python: one to one **********
type_sql2py_dict = {}
for key in sqlalchemy.types.__dict__['__all__']:
sqltype = getattr(sqlalchemy.types, key)
if 'python_type' in dir(sqltype) and not sqltype.__name__.startswith('Type'):
try:
typeinst = sqltype()
except TypeError as e: #List/array wants inner-type
typeinst = sqltype(None)
try:
type_sql2py_dict[sqltype] = typeinst.python_type
except NotImplementedError:
pass
#********** Python to SQL: one to many **********
type_py2sql_dict = {}
for key, val in type_sql2py_dict.items():
if not val in type_py2sql_dict:
type_py2sql_dict[val] = [key]
else:
type_py2sql_dict[val].append(key)
这是在sqlalchemy版本1.3.5下,type_py2sql_dict
的输出结果:
{int: [sqlalchemy.sql.sqltypes.INTEGER,
sqlalchemy.sql.sqltypes.BIGINT,
sqlalchemy.sql.sqltypes.SMALLINT,
sqlalchemy.sql.sqltypes.Integer,
sqlalchemy.sql.sqltypes.SmallInteger,
sqlalchemy.sql.sqltypes.BigInteger],
str: [sqlalchemy.sql.sqltypes.CHAR,
sqlalchemy.sql.sqltypes.VARCHAR,
sqlalchemy.sql.sqltypes.NCHAR,
sqlalchemy.sql.sqltypes.NVARCHAR,
sqlalchemy.sql.sqltypes.TEXT,
sqlalchemy.sql.sqltypes.Text,
sqlalchemy.sql.sqltypes.CLOB,
sqlalchemy.sql.sqltypes.String,
sqlalchemy.sql.sqltypes.Unicode,
sqlalchemy.sql.sqltypes.UnicodeText,
sqlalchemy.sql.sqltypes.Enum],
float: [sqlalchemy.sql.sqltypes.FLOAT,
sqlalchemy.sql.sqltypes.REAL,
sqlalchemy.sql.sqltypes.Float],
decimal.Decimal: [sqlalchemy.sql.sqltypes.NUMERIC,
sqlalchemy.sql.sqltypes.DECIMAL,
sqlalchemy.sql.sqltypes.Numeric],
datetime.datetime: [sqlalchemy.sql.sqltypes.TIMESTAMP,
sqlalchemy.sql.sqltypes.DATETIME,
sqlalchemy.sql.sqltypes.DateTime],
bytes: [sqlalchemy.sql.sqltypes.BLOB,
sqlalchemy.sql.sqltypes.BINARY,
sqlalchemy.sql.sqltypes.VARBINARY,
sqlalchemy.sql.sqltypes.LargeBinary,
sqlalchemy.sql.sqltypes.Binary],
bool: [sqlalchemy.sql.sqltypes.BOOLEAN, sqlalchemy.sql.sqltypes.Boolean],
datetime.date: [sqlalchemy.sql.sqltypes.DATE, sqlalchemy.sql.sqltypes.Date],
datetime.time: [sqlalchemy.sql.sqltypes.TIME, sqlalchemy.sql.sqltypes.Time],
datetime.timedelta: [sqlalchemy.sql.sqltypes.Interval],
list: [sqlalchemy.sql.sqltypes.ARRAY],
dict: [sqlalchemy.sql.sqltypes.JSON]}
26
只需使用所有AQLAlchemy类型中都可以找到的 python_type
属性:
[c.type.python_type for c in datatable.columns]
7
一种解决办法是手动进行转换,比如说,下面这个方法就可以用:
def convert(self, saType):
type = "Unknown"
if isinstance(saType,sqlalchemy.types.INTEGER):
type = "Integer"
elif isinstance(saType,sqlalchemy.types.VARCHAR):
type = "String"
elif isinstance(saType,sqlalchemy.types.DATE):
type = "Date"
elif isinstance(saType,sqlalchemy.dialects.mysql.base._FloatType):
type = "Double"
return type
我不太确定这是不是Python的常规做法……我还是习惯用Java程序员的思维方式。