使用Python进行医学信息提取

14 投票
4 回答
7041 浏览
提问于 2025-04-16 06:02

我是一名护士,虽然我会用Python,但并不是专家,只是用它来处理DNA序列。
我们有一些医院记录,都是用人类语言写的,我需要把这些数据放进数据库或CSV文件里,但这些记录超过5000行,工作量很大。所有数据的格式都是一致的,给你看个例子:

11/11/2010 - 09:00am : He got nausea, vomiting and died 4 hours later

我应该得到以下数据:

Sex: Male
Symptoms: Nausea
    Vomiting
Death: True
Death Time: 11/11/2010 - 01:00pm

再举个例子:

11/11/2010 - 09:00am : She got heart burn, vomiting of blood and died 1 hours later in the operation room

而我得到的是:

Sex: Female
Symptoms: Heart burn
    Vomiting of blood
Death: True
Death Time: 11/11/2010 - 10:00am

顺序不太一致。当我说“in”时,这个“in”是一个关键词,后面的文字是一个地点,直到我找到另一个关键词为止。
一开始“他”或“她”会确定性别,接着是一些症状,症状之间用分隔符分开,可能是逗号、连字符等,但在同一行中是保持一致的。
比如“died ... hours later”也需要记录多少小时,有时候病人还活着,或者已经出院等等。
这就是说,我们有很多约定,我觉得如果能用关键词和模式来切分文本,就能完成这个工作。所以,如果你知道有什么有用的函数、模块、教程或工具来做到这一点,最好是Python的(如果没有Python的,图形界面的工具也不错),请告诉我。

一些额外信息:

there are a lot of rules to express various medical data but here are few examples
- Start with the same date/time format followed by a space followd by a colon followed by a space followed by He/She followed space followed by rules separated by and
- Rules:
    * got <symptoms>,<symptoms>,....
    * investigations were done <investigation>,<investigation>,<investigation>,......
    * received <drug or procedure>,<drug or procedure>,.....
    * discharged <digit> (hour|hours) later
    * kept under observation
    * died <digit> (hour|hours) later
    * died <digit> (hour|hours) later in <place>
other rules do exist but they follow the same idea

4 个回答

3

也许这对你也有帮助,不过还没有经过测试。

import collections
import datetime
import re

retrieved_data = []

Data = collections.namedtuple('Patient', 'Sex, Symptoms, Death, Death_Time')
dict_data = {'Death':'',
             'Death_Time':'',
             'Sex' :'',
             'Symptoms':''}


with open('data.txt') as f:
     for line in iter(f.readline, ""):

         date, text = line.split(" : ")
         if 'died' in text:
             dict_data['Death'] = True
             dict_data['Death_Time'] = datetime.datetime.strptime(date, 
                                                                 '%d/%m/%Y - %I:%M%p')
             hours = re.findall('[\d]+', datetime.text)
             if hours:
                 dict_data['Death_Time'] += datetime.timedelta(hours=int(hours[0]))
         if 'she' in text:
            dict_data['Sex'] = 'Female'
         else:
            dict_data['Sex'] = 'Male'

         symptoms = text[text.index('got'):text.index('and')].split(',')

         dict_data['Symptoms'] = '\n'.join(symptoms) 

         retrieved_data.append(Data(**dict_data))

         # EDIT : Reset the data dictionary.
         dict_data = {'Death':'',
             'Death_Time':'',
             'Sex' :'',
             'Symptoms':''}
9

这里有几种可能的解决方法:

  1. 使用正则表达式 - 根据你文本中的模式来定义正则表达式。匹配这些表达式,提取出你需要的内容,然后对所有记录重复这个过程。这种方法需要你对数据的格式有很好的理解,当然也需要懂一些正则表达式的知识 :)
  2. 字符串操作 - 这种方法相对简单一些。同样,你需要对数据的格式有一定的了解。这就是我下面所做的。
  3. 机器学习 - 你可以定义所有的规则,并根据这些规则训练一个模型。之后,这个模型会尝试根据你提供的规则来提取数据。这种方法比前两种更通用,但实现起来也是最复杂的。

看看这些方法是否适合你,可能需要做一些调整。

new_file = open('parsed_file', 'w')
for rec in open("your_csv_file"):
    tmp = rec.split(' : ')
    date = tmp[0]
    reason = tmp[1]

    if reason[:2] == 'He':
        sex = 'Male'
        symptoms = reason.split(' and ')[0].split('He got ')[1]
    else:
        sex = 'Female'
        symptoms = reason.split(' and ')[0].split('She got ')[1]
    symptoms = [i.strip() for i in symptoms.split(',')]
    symptoms = '\n'.join(symptoms)
    if 'died' in rec:
        died = 'True'
    else:
        died = 'False'
    new_file.write("Sex: %s\nSymptoms: %s\nDeath: %s\nDeath Time: %s\n\n" % (sex, symptoms, died, date))

每条记录是用换行符 \n 分隔的,而你没有提到一个病人的记录是用两个换行符 \n\n 来分隔的。

后来: @Nurse 你最后是怎么做的?我很好奇。

9

这个内容使用了 dateutil 来解析日期,比如说 '11/11/2010 - 09:00am',还用了 parsedatetime 来解析相对时间,比如 '4 hours later':

import dateutil.parser as dparser
import parsedatetime.parsedatetime as pdt
import parsedatetime.parsedatetime_consts as pdc
import time
import datetime
import re
import pprint
pdt_parser = pdt.Calendar(pdc.Constants())   
record_time_pat=re.compile(r'^(.+)\s+:')
sex_pat=re.compile(r'\b(he|she)\b',re.IGNORECASE)
death_time_pat=re.compile(r'died\s+(.+hours later).*$',re.IGNORECASE)
symptom_pat=re.compile(r'[,-]')

def parse_record(astr):    
    match=record_time_pat.match(astr)
    if match:
        record_time=dparser.parse(match.group(1))
        astr,_=record_time_pat.subn('',astr,1)
    else: sys.exit('Can not find record time')
    match=sex_pat.search(astr)    
    if match:
        sex=match.group(1)
        sex='Female' if sex.lower().startswith('s') else 'Male'
        astr,_=sex_pat.subn('',astr,1)
    else: sys.exit('Can not find sex')
    match=death_time_pat.search(astr)
    if match:
        death_time,date_type=pdt_parser.parse(match.group(1),record_time)
        if date_type==2:
            death_time=datetime.datetime.fromtimestamp(
                time.mktime(death_time))
        astr,_=death_time_pat.subn('',astr,1)
        is_dead=True
    else:
        death_time=None
        is_dead=False
    astr=astr.replace('and','')    
    symptoms=[s.strip() for s in symptom_pat.split(astr)]
    return {'Record Time': record_time,
            'Sex': sex,
            'Death Time':death_time,
            'Symptoms': symptoms,
            'Death':is_dead}


if __name__=='__main__':
    tests=[('11/11/2010 - 09:00am : He got nausea, vomiting and died 4 hours later',
            {'Sex':'Male',
             'Symptoms':['got nausea', 'vomiting'],
             'Death':True,
             'Death Time':datetime.datetime(2010, 11, 11, 13, 0),
             'Record Time':datetime.datetime(2010, 11, 11, 9, 0)}),
           ('11/11/2010 - 09:00am : She got heart burn, vomiting of blood and died 1 hours later in the operation room',
           {'Sex':'Female',
             'Symptoms':['got heart burn', 'vomiting of blood'],
             'Death':True,
             'Death Time':datetime.datetime(2010, 11, 11, 10, 0),
             'Record Time':datetime.datetime(2010, 11, 11, 9, 0)})
           ]

    for record,answer in tests:
        result=parse_record(record)
        pprint.pprint(result)
        assert result==answer
        print

输出结果是:

{'Death': True,
 'Death Time': datetime.datetime(2010, 11, 11, 13, 0),
 'Record Time': datetime.datetime(2010, 11, 11, 9, 0),
 'Sex': 'Male',
 'Symptoms': ['got nausea', 'vomiting']}

{'Death': True,
 'Death Time': datetime.datetime(2010, 11, 11, 10, 0),
 'Record Time': datetime.datetime(2010, 11, 11, 9, 0),
 'Sex': 'Female',
 'Symptoms': ['got heart burn', 'vomiting of blood']}

注意:解析日期的时候要小心。比如 '8/9/2010' 是指8月9日,还是9月8日呢?所有记录的人都用同样的格式吗?如果你选择使用 dateutil(我觉得这是处理不太固定格式日期字符串的最佳选择),一定要阅读 dateutil 文档 中关于“格式优先级”的部分,这样你就能(希望能)正确解析 '8/9/2010'。如果你不能保证所有记录的人都用相同的日期格式,那么这个脚本的结果就需要手动检查了。无论如何,这样做可能都是明智的。

撰写回答