在Python中计算皮尔逊相关系数及显著性
我在找一个函数,这个函数可以接收两个列表作为输入,然后返回它们之间的皮尔逊相关系数,还有这个相关性的重要性。
16 个回答
62
一个替代方案是使用一个叫做 SciPy 的库里的原生函数,具体是 linregress,这个函数可以计算以下内容:
斜率:回归线的斜率
截距:回归线的截距
相关系数:用来衡量两个变量之间关系强度的值
p值:用于假设检验的双侧p值,假设的原假设是斜率为零
标准误差:估计值的标准误差
下面是一个例子:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
这个会返回:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
218
你可以去看看这个链接:scipy.stats
,这里面有很多关于统计的内容。
from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)
输出结果:
>>>
Help on function pearsonr in module scipy.stats.stats:
pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation