使用Glumpy实时显示NumPy数组为图像
我在用Python做一个模拟模型,使用了NumPy和SciPy,每次运行都会输出一个二维的NumPy数组。我现在是用matplotlib的imshow函数把这个输出显示成图片。不过,我最近发现了Glumpy,看到它的文档上说:
得益于IPython环境,Glumpy可以在交互模式下运行,这样你可以实时看到数组内容变化时的更新。
但是,我不知道怎么用他们给的例子来实现这个功能。简单来说,我的模型是一个函数,里面有一个很大的for循环,用来控制运行的次数。在每次循环结束时,我想显示这个数组。目前我用matplotlib把图片保存成png文件,因为通过matplotlib在屏幕上显示图片时,Python的进程会卡住。
我相信用Glumpy可以做到这一点,只是我不太清楚怎么做,也找不到有用的教程。
2 个回答
1
使用 pyformulas 0.2.8,你可以用 pf.screen 来创建一个不阻塞的屏幕:
import pyformulas as pf
import numpy as np
canvas = np.floor(np.random.normal(scale=50, size=(480,640,3)) % 256).astype(np.uint8)
screen = pf.screen(canvas)
while screen.exists():
canvas = np.floor(np.random.normal(scale=50, size=(480,640,3)) % 256).astype(np.uint8)
screen.update(canvas)
#screen.close()
免责声明:我是 pyformulas 的维护者
11
Glumpy 的文档几乎没有!这里有一个简单的模拟示例,比较了使用 glumpy
和 matplotlib
的数组可视化效果:
import numpy as np
import glumpy
from OpenGL import GLUT as glut
from time import time
from matplotlib.pyplot import subplots,close
from matplotlib import cm
def randomwalk(dims=(256,256),n=3,sigma=10,alpha=0.95,seed=1):
""" A simple random walk with memory """
M = np.zeros(dims,dtype=np.float32)
r,c = dims
gen = np.random.RandomState(seed)
pos = gen.rand(2,n)*((r,),(c,))
old_delta = gen.randn(2,n)*sigma
while 1:
delta = (1.-alpha)*gen.randn(2,n)*sigma + alpha*old_delta
pos += delta
for ri,ci in pos.T:
if not (0. <= ri < r) : ri = abs(ri % r)
if not (0. <= ci < c) : ci = abs(ci % c)
M[ri,ci] += 1
old_delta = delta
yield M
def mplrun(niter=1000):
""" Visualise the simulation using matplotlib, using blit for
improved speed"""
fig,ax = subplots(1,1)
rw = randomwalk()
im = ax.imshow(rw.next(),interpolation='nearest',cmap=cm.hot,animated=True)
fig.canvas.draw()
background = fig.canvas.copy_from_bbox(ax.bbox) # cache the background
tic = time()
for ii in xrange(niter):
im.set_data(rw.next()) # update the image data
fig.canvas.restore_region(background) # restore background
ax.draw_artist(im) # redraw the image
fig.canvas.blit(ax.bbox) # redraw the axes rectangle
close(fig)
print "Matplotlib average FPS: %.2f" %(niter/(time()-tic))
def gprun(niter=1000):
""" Visualise the same simulation using Glumpy """
rw = randomwalk()
M = rw.next()
# create a glumpy figure
fig = glumpy.figure((512,512))
# the Image.data attribute is a referenced copy of M - when M
# changes, the image data also gets updated
im = glumpy.image.Image(M,colormap=glumpy.colormap.Hot)
@fig.event
def on_draw():
""" called in the simulation loop, and also when the
figure is resized """
fig.clear()
im.update()
im.draw( x=0, y=0, z=0, width=fig.width, height=fig.height )
tic = time()
for ii in xrange(niter):
M = rw.next() # update the array
glut.glutMainLoopEvent() # dispatch queued window events
on_draw() # update the image in the back buffer
glut.glutSwapBuffers() # swap the buffers so image is displayed
fig.window.hide()
print "Glumpy average FPS: %.2f" %(niter/(time()-tic))
if __name__ == "__main__":
mplrun()
gprun()
我使用 matplotlib
和 GTKAgg
作为后端,并且用 blit
来避免每次都画背景,这样我能达到大约 95 帧每秒(FPS)。而使用 Glumpy
的话,我能达到大约 250-300 帧每秒,尽管我现在的笔记本电脑显卡配置比较差。话虽如此,Glumpy
的设置稍微复杂一些,除非你在处理非常大的矩阵,或者因为某种原因需要非常高的帧率,否则我建议还是用 matplotlib
搭配 blit
。