Plotly:如何根据悬停获取的值编辑文本输出?
我正在使用下面的代码在plotly dash中显示x和y的值。但是我想在"value"文本框下面再添加一个文本框。
这个文本框叫做“Category”,也就是说,如果显示的y值是:5k,那么类别就是“不是很贵”;如果值是20k,那么类别就是“价格一般”;如果值是30k,那么类别就是“太贵了”。
我该怎么实现这个功能呢?以下是可以运行的代码,能够显示鼠标悬停时的值。
import json
from textwrap import dedent as d
import pandas as pd
import plotly.graph_objects as go
import numpy as np
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
from dash.dependencies import Input, Output
from jupyter_dash import JupyterDash
# app info
app = JupyterDash(__name__)
styles = {
'pre': {
'border': 'thin lightgrey solid',
'overflowX': 'scroll'
}
}
# data and basic figure
x = np.arange(20)+10
fig = go.Figure(data=go.Scatter(x=x, y=x**2, mode = 'lines+markers'))
fig.add_traces(go.Scatter(x=x, y=x**2.2, mode = 'lines+markers'))
app.layout = html.Div([
dcc.Graph(
id='basic-interactions',
figure=fig,
),
html.Div(className='row', children=[
html.Div([
dcc.Markdown(d("""
Click on points in the graph.
""")),
html.Pre(id='hover-data', style=styles['pre']),
], className='three columns'),
])
])
@app.callback(
Output('hover-data', 'children'),
[Input('basic-interactions', 'hoverData')])
def display_hover_data(hoverData):
return json.dumps(hoverData, indent=2)
app.run_server(mode='external', port = 8070, dev_tools_ui=True,
dev_tools_hot_reload =True, threaded=True)
相关问题:
- 暂无相关问题
1 个回答
3
根据你设置的以下修改:
if hoverData['points'][0]['y'] >= 5000:
Category = 'not Pricey'
if hoverData['points'][0]['y'] >= 20000:
Category = 'average price'
if hoverData['points'][0]['y'] >= 30000:
Category = 'Too pricey'
output = json.dumps({'Date:':hoverData['points'][0]['x'],
'Value:':hoverData['points'][0]['y'],
'Category':Category
}, indent = 2)
...下面的代码片段会生成如下应用:
你没有为小于5000的值指定类别,所以现在只返回了一个空字符串。试试看,告诉我效果如何。
import json
from textwrap import dedent as d
import pandas as pd
import plotly.graph_objects as go
import numpy as np
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
from dash.dependencies import Input, Output
from jupyter_dash import JupyterDash
# app info
app = JupyterDash(__name__)
styles = {
'pre': {
'border': 'thin lightgrey solid',
'overflowX': 'scroll'
}
}
# data and basic figure
y = np.arange(100)+20
x = pd.date_range(start='1/1/2021', periods=len(y))
fig = go.Figure(data=go.Scatter(x=x, y=y**2, mode = 'lines+markers'))
fig.add_traces(go.Scatter(x=x, y=y**2.2, mode = 'lines+markers'))
app.layout = html.Div([
dcc.Graph(
id='basic-interactions',
figure=fig,
),
html.Div(className='row', children=[
html.Div([
dcc.Markdown(d("""
Click on points in the graph.
""")),
html.Pre(id='hover-data', style=styles['pre']),
], className='three columns'),
])
])
# The text field would be called "Category" so that if the y value displayed is:
# 5k then category = not pricey or if value is 20k then category = average price and
# if value is 30k then category = too pricey.
@app.callback(
Output('hover-data', 'children'),
[Input('basic-interactions', 'hoverData')])
def display_hover_data(hoverData):
global hd
hd = hoverData
Category = ''
try:
output = json.dumps({'Date:':hoverData['points'][0]['x'],
'Value:':hoverData['points'][0]['y']}, indent = 2)
if hoverData['points'][0]['y'] >= 5000:
Category = 'not Pricey'
if hoverData['points'][0]['y'] >= 20000:
Category = 'average price'
if hoverData['points'][0]['y'] >= 30000:
Category = 'Too pricey'
output = json.dumps({'Date:':hoverData['points'][0]['x'],
'Value:':hoverData['points'][0]['y'],
'Category':Category
}, indent = 2)
print(output)
return output
except:
return None
app.run_server(mode='external', port = 8070, dev_tools_ui=True,
dev_tools_hot_reload =True, threaded=True)