词干提取与词形还原的比较
根据一些研究,我发现了以下重要的比较分析:
如果我们看看文本,通常来说,词形还原(lemmatization)应该能返回更正确的结果,对吧?不仅正确,而且是简化的版本。我在这方面做了一个实验:
sentence ="having playing in today gaming ended with greating victorious"
但是当我运行词干提取(stemming)和词形还原的代码时,得到了以下结果:
['have', 'play', 'in', 'today', 'game', 'end', 'with', 'great', 'victori'] ['having', 'playing', 'in', 'today', 'gaming', 'ended', 'with', 'greating', 'victorious']
第一个结果是词干提取,整体看起来还不错,除了“victori”(应该是“victory”对吧)。第二个结果是词形还原(所有的都是正确的,但保持了原始形式)。那么在这种情况下,哪个选项更好呢?是简短且大部分不正确的版本,还是较长但正确的版本呢?
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from nltk.stem import PorterStemmer,WordNetLemmatizer
mylematizer =WordNetLemmatizer()
mystemmer =PorterStemmer()
nltk.download('stopwords')
sentence ="having playing in today gaming ended with greating victorious"
words =word_tokenize(sentence)
# print(words)
stemmed =[mystemmer.stem(w) for w in words]
lematized=[mylematizer.lemmatize(w) for w in words ]
print(stemmed)
print(lematized)
# mycounter =CountVectorizer()
# mysentence ="i love ibsu. because ibsu is great university"
# # print(word_tokenize(mysentence))
# # print(sent_tokenize(mysentence))
# individual_words=word_tokenize(mysentence)
# stops =list(stopwords.words('english'))
# words =[w for w in individual_words if w not in stops and w.isalnum() ]
# reduced =[mystemmer.stem(w) for w in words]
# new_sentence =' '.join(words)
# frequencies =mycounter.fit_transform([new_sentence])
# print(frequencies.toarray())
# print(mycounter.vocabulary_)
# print(mycounter.get_feature_names_out())
# print(new_sentence)
# print(words)
# # print(list(stopwords.words('english')))
1 个回答
0
这里有一个例子,展示了词形还原器是如何处理你字符串中的单词的词性:
import nltk
nltk.download('wordnet')
from nltk.corpus import wordnet
from nltk.stem.wordnet import WordNetLemmatizer
from nltk import word_tokenize, pos_tag
from collections import defaultdict
tag_map = defaultdict(lambda : wordnet.NOUN)
tag_map['J'] = wordnet.ADJ
tag_map['V'] = wordnet.VERB
tag_map['R'] = wordnet.ADV
sentence = "having playing in today gaming ended with greating victorious"
tokens = word_tokenize(sentence)
wnl = WordNetLemmatizer()
for token, tag in pos_tag(tokens):
print('found tag', tag[0])
lemma = wnl.lemmatize(token, tag_map[tag[0]])
print(token, "lemmatized to", lemma)
输出结果:
found tag V
having lemmatized to have
found tag N
playing lemmatized to playing
found tag I
in lemmatized to in
found tag N
today lemmatized to today
found tag N
gaming lemmatized to gaming
found tag V
ended lemmatized to end
found tag I
with lemmatized to with
found tag V
greating lemmatized to greating
found tag J
victorious lemmatized to victorious
词形还原是把单词简化到它们的基本形式。这有点像词干提取,但词形还原会考虑单词的上下文,把意思相近的单词联系在一起。这个复杂的语言学术语叫做“形态学”。那么,在某种语言中,单词之间是如何关联的呢?如果你看看上面的输出,带有ing的动词被当作名词来解析。虽然这些动词是动词,但它们也可以作为名词使用:比如我喜欢游泳。在这个例子中,动词是“喜欢”,名词是“游泳”。这就是上面标签被解释的方式。老实说,你上面的句子根本就不是一个完整的句子。我不会说哪个是对的,哪个是错的,但当句子中正确使用词性时,词形还原会显得更强大,尤其是在有独立从句或依赖从句的情况下。