在numpy数组中快速替换值
我有一个非常大的numpy数组(里面有多达一百万个元素),像下面这样:
[0,1,6,5,1,2,7,6,2,3,8,7,3,4,9,8,5,6,11,10,6,7,12,11,7,
8,13,12,8,9,14,13,10,11,16,15,11,12,17,16,12,13,18,17,13,
14,19,18,15,16,21,20,16,17,22,21,17,18,23,22,18,19,24,23]
还有一个小字典,用来替换上面数组中的一些元素。
{4: 0, 9: 5, 14: 10, 19: 15, 20: 0, 21: 1, 22: 2, 23: 3, 24: 0}
我想根据上面的字典来替换一些元素。这个numpy数组真的很大,而只有一小部分元素(在字典中作为键出现)会被替换成对应的值。请问有什么最快的方法来做到这一点呢?
11 个回答
15
我测试了一些解决方案,结果非常明显:
import timeit
import numpy as np
array = 2 * np.round(np.random.uniform(0,10000,300000)).astype(int)
from_values = np.unique(array) # pair values from 0 to 2000
to_values = np.arange(from_values.size) # all values from 0 to 1000
d = dict(zip(from_values, to_values))
def method_for_loop():
out = array.copy()
for from_value, to_value in zip(from_values, to_values) :
out[out == from_value] = to_value
print('Check method_for_loop :', np.all(out == array/2)) # Just checking
print('Time method_for_loop :', timeit.timeit(method_for_loop, number = 1))
def method_list_comprehension():
out = [d[i] for i in array]
print('Check method_list_comprehension :', np.all(out == array/2)) # Just checking
print('Time method_list_comprehension :', timeit.timeit(method_list_comprehension, number = 1))
def method_bruteforce():
idx = np.nonzero(from_values == array[:,None])[1]
out = to_values[idx]
print('Check method_bruteforce :', np.all(out == array/2)) # Just checking
print('Time method_bruteforce :', timeit.timeit(method_bruteforce, number = 1))
def method_searchsort():
sort_idx = np.argsort(from_values)
idx = np.searchsorted(from_values,array,sorter = sort_idx)
out = to_values[sort_idx][idx]
print('Check method_searchsort :', np.all(out == array/2)) # Just checking
print('Time method_searchsort :', timeit.timeit(method_searchsort, number = 1))
我得到了以下结果:
Check method_for_loop : True
Time method_for_loop : 2.6411612760275602
Check method_list_comprehension : True
Time method_list_comprehension : 0.07994363596662879
Check method_bruteforce : True
Time method_bruteforce : 11.960559037979692
Check method_searchsort : True
Time method_searchsort : 0.03770717792212963
“searchsort”方法的速度几乎快了一百倍,比“for”循环快,且比numpy的暴力方法快了大约3600倍。而列表推导式方法在代码简单性和速度之间也是一个非常不错的折中选择。
28
假设这些数值在0到某个最大整数之间,我们可以利用numpy数组来快速替换,就像用一个 int->int
的字典一样,下面是一个示例:
mp = numpy.arange(0,max(data)+1)
mp[replace.keys()] = replace.values()
data = mp[data]
首先是
data = [ 0 1 6 5 1 2 7 6 2 3 8 7 3 4 9 8 5 6 11 10 6 7 12 11 7
8 13 12 8 9 14 13 10 11 16 15 11 12 17 16 12 13 18 17 13 14 19 18 15 16
21 20 16 17 22 21 17 18 23 22 18 19 24 23]
然后用来替换的是
replace = {4: 0, 9: 5, 14: 10, 19: 15, 20: 0, 21: 1, 22: 2, 23: 3, 24: 0}
这样我们就得到了
data = [ 0 1 6 5 1 2 7 6 2 3 8 7 3 0 5 8 5 6 11 10 6 7 12 11 7
8 13 12 8 5 10 13 10 11 16 15 11 12 17 16 12 13 18 17 13 10 15 18 15 16
1 0 16 17 2 1 17 18 3 2 18 15 0 3]
49
我觉得还有更有效的方法,不过现在先试试这个吧。
from numpy import copy
newArray = copy(theArray)
for k, v in d.iteritems(): newArray[theArray==k] = v
进行小规模测试并检查结果是否正确:
#!/usr/bin/env python2.7
from numpy import copy, random, arange
random.seed(0)
data = random.randint(30, size=10**5)
d = {4: 0, 9: 5, 14: 10, 19: 15, 20: 0, 21: 1, 22: 2, 23: 3, 24: 0}
dk = d.keys()
dv = d.values()
def f1(a, d):
b = copy(a)
for k, v in d.iteritems():
b[a==k] = v
return b
def f2(a, d):
for i in xrange(len(a)):
a[i] = d.get(a[i], a[i])
return a
def f3(a, dk, dv):
mp = arange(0, max(a)+1)
mp[dk] = dv
return mp[a]
a = copy(data)
res = f2(a, d)
assert (f1(data, d) == res).all()
assert (f3(data, dk, dv) == res).all()
结果:
$ python2.7 -m timeit -s 'from w import f1,f3,data,d,dk,dv' 'f1(data,d)'
100 loops, best of 3: 6.15 msec per loop
$ python2.7 -m timeit -s 'from w import f1,f3,data,d,dk,dv' 'f3(data,dk,dv)'
100 loops, best of 3: 19.6 msec per loop